Elemente der Geschichte der Mathematik
Module MA8013
This module handbook serves to describe contents, learning outcome, methods and examination type as well as linking to current dates for courses and module examination in the respective sections.
Basic Information
MA8013 is a semester module in German language at Bachelor’s level and Master’s level which is offered irregular.
This Module is included in the following catalogues within the study programs in physics.
- Catalogue of soft-skill courses
Total workload | Contact hours | Credits (ECTS) |
---|---|---|
60 h | 15 h | 2 CP |
Content, Learning Outcome and Preconditions
Content
- Struktur der Entwicklung mathematischer Fragen und Ideen in Europa und außerhalb von der Frühzeit bis zur Gegenwart, auch im allgemeinhistorischen Kontext
- Überblick über die Geschichte einzelner mathematischer Gebiete wie Algebra, Analysis, Geometrie und Wahrscheinlichkeitstheorie sowie deren Interaktionen
- Exemplarische Ideengeschichte ausgewählter Konzepte
- biographische Beispiele
- Überblick über die Geschichte einzelner mathematischer Gebiete wie Algebra, Analysis, Geometrie und Wahrscheinlichkeitstheorie sowie deren Interaktionen
- Exemplarische Ideengeschichte ausgewählter Konzepte
- biographische Beispiele
Learning Outcome
Beim erfolgreichen Abschluss des Moduls sind die Studierenden in der Lage,
- einen groben Überblick über die Entwicklung der Mathematik von der Antike bis zur Neuzeit zu geben
- wesentliche Fortschritte der mathematischen Wissenschaftsgeschichte zu benennen, zeitlich einzuordnen und ihre Bedeutung zu erläutern
- mit einschlägiger Fachliteratur umzugehen, insbesondere um speziellere Aspekte der geschichtlichen Entwicklung zu recherchieren und aufzubereiten
- einen groben Überblick über die Entwicklung der Mathematik von der Antike bis zur Neuzeit zu geben
- wesentliche Fortschritte der mathematischen Wissenschaftsgeschichte zu benennen, zeitlich einzuordnen und ihre Bedeutung zu erläutern
- mit einschlägiger Fachliteratur umzugehen, insbesondere um speziellere Aspekte der geschichtlichen Entwicklung zu recherchieren und aufzubereiten
Preconditions
Erfahrung im Umgang mit wissenschaftlich betriebener Mathematik (ca. drei Semester im Bachelorstudiengang Mathematik)
Courses, Learning and Teaching Methods and Literature
Courses and Schedule
Type | SWS | Title | Lecturer(s) | Dates | Links |
---|---|---|---|---|---|
VO | 1 | Elements of the History of Mathematics [MA8013] | Kreiner, C. |
Tue, 16:15–17:00, MI 03.04.011 |
eLearning |
Learning and Teaching Methods
Vorlesung
In der Vorlesung werden die Inhalte im Vortrag durch anschauliche Beispiele sowie durch Diskussion mit den Studierenden vermittelt. Die Vorlesung soll den Studierenden dabei auch als Motivation zur eigenständigen inhaltlichen Auseinandersetzung mit den Themen dienen.
In der Vorlesung werden die Inhalte im Vortrag durch anschauliche Beispiele sowie durch Diskussion mit den Studierenden vermittelt. Die Vorlesung soll den Studierenden dabei auch als Motivation zur eigenständigen inhaltlichen Auseinandersetzung mit den Themen dienen.
Media
Vortrag, Begleitliteratur
Literature
H. Wußing: 6000 Jahre Mathematik. Springer 2008/09 (zwei Bände)
I. Kleiner: Excursions in the History of Mathematics. Birkhäuser 2012
R. Cooke: The History of Mathematics, a brief course. Wiley-Interscience 2005.
D. J. Struik: A Source Book in Mathematics, 1200-1800. Harvard University Press 1969.
I. Kleiner: Excursions in the History of Mathematics. Birkhäuser 2012
R. Cooke: The History of Mathematics, a brief course. Wiley-Interscience 2005.
D. J. Struik: A Source Book in Mathematics, 1200-1800. Harvard University Press 1969.
Module Exam
Description of exams and course work
Die Studienleistung besteht aus einer Hausarbeit mit Kolloquium ("wissenschaftliche Ausarbeitung" gemäß FPSO Mathematik). In ihren individuell angefertigten Hausarbeiten von je ca. 5000-6000 Wörtern zeigen die Studierenden, dass sie zu einem umgrenzten Thema aus der Geschichte der Mathematik Literatur erschließen und es unter Beachtung der Richtlinien für wissenschaftliches Arbeiten schlüssig darstellen können. Im Kolloquium stellen sie ihr jeweiliges Thema in einer kurzen Präsentation (ca. 10 Minuten) vor und diskutieren es mit einem interessierten Auditorium (ca. 10 Minuten).
Exam Repetition
The exam may be repeated at the end of the semester.