Wavelets

Modul MA5046

Dieses Modul wird durch Fakultät für Mathematik bereitgestellt.

Diese Modulbeschreibung enthält neben den eigentlichen Beschreibungen der Inhalte, Lernergebnisse, Lehr- und Lernmethoden und Prüfungsformen auch Verweise auf die aktuellen Lehrveranstaltungen und Termine für die Modulprüfung in den jeweiligen Abschnitten.

Basisdaten

MA5046 ist ein Semestermodul in Englisch auf Master-Niveau das unregelmäßig angeboten wird.

Die Gültigkeit des Moduls ist von WS 2015/6 bis SS 2016.

GesamtaufwandPräsenzveranstaltungenUmfang (ECTS)
150 h 45 h 5 CP

Inhalte, Lernergebnisse und Voraussetzungen

Inhalt

Wavelet transforms, Riesz basis and frames, multiscale analysis and construction of wavelet basis, spline wavelets, biorthogonal wavelets, wavelet decomposition and functions spaces, applications of wavelet analysis

Lernergebnisse

At the end of module the students have mathematical understanding of basic wavelets techniques and are able to analyse functions by wavelet transform and wavelet decomposition. They can apply these wavelet techniques in different fields and have programming skills for wavelet approximation.

Voraussetzungen

MA1302 Introduction to Numerical Analysis, MA2302 Numerical Analysis, MA3001 Functional Analysis, MA2003 Measure theory and Integration

Lehrveranstaltungen, Lern- und Lehrmethoden und Literaturhinweise

Lehrveranstaltungen und Termine

Lern- und Lehrmethoden

The module consists of the lecture supplemented by an exercise session. The lecture material is presented on the blackboard. The students are encouraged to study course references and course subjects. The exercise session consists of theoretical exercises. In the theoretical exercises students will work under instructor assistance on assignments, sometimes in teamwork. The exercises contribute to a better understanding of the lecture materials.

Medienformen

blackboard lecture, numerical demonstrations, exercises

Literatur

(1) I. Daubechies, Ten Lectures on Wavelets, SIAM, 1992. (2) M. Pereya, L. Ward, Harmonic Analysis (From Fourier to Wavelets), AMS, 2012

Modulprüfung

Beschreibung der Prüfungs- und Studienleistungen

The examination is a 90 minutes' written test without any auxiliary resources. The students are asked to explain basic properties of wavelets and their mathematical derivation. They demonstrate their ability to analyse functions and function spaces by wavelet transforms and wavelet decomposition. They can read, understand, and write short numerical programmes for wavelet approximation schemes.

Wiederholbarkeit

Eine Wiederholungsmöglichkeit wird am Semesterende angeboten.

Kondensierte Materie

Wenn Atome sich zusammen tun, wird es interessant: Grundlagenforschung an Festkörperelementen, Nanostrukturen und neuen Materialien mit überraschenden Eigenschaften treffen auf innovative Anwendungen.

Kern-, Teilchen-, Astrophysik

Ziel der Forschung ist das Verständnis unserer Welt auf subatomarem Niveau, von den Atomkernen im Zentrum der Atome bis hin zu den elementarsten Bausteinen unserer Welt.

Biophysik

Biologische Systeme, vom Protein bis hin zu lebenden Zellen und deren Verbänden, gehorchen physikalischen Prinzipien. Unser Forschungsbereich Biophysik ist deutschlandweit einer der größten Zusammenschlüsse in diesem Bereich.