Quantum Spin Systems (An introduction to the general theory, Frustration-Free models, and Gapped Quantum Phases)

Modul MA5020

Dieses Modul wird durch Fakultät für Mathematik bereitgestellt.

Diese Modulbeschreibung enthält neben den eigentlichen Beschreibungen der Inhalte, Lernergebnisse, Lehr- und Lernmethoden und Prüfungsformen auch Verweise auf die aktuellen Lehrveranstaltungen und Termine für die Modulprüfung in den jeweiligen Abschnitten.

Basisdaten

MA5020 ist ein Semestermodul in Englisch auf Master-Niveau das einmalig angeboten wird.

Die Gültigkeit des Moduls ist von WS 2015/6 bis SS 2016.

GesamtaufwandPräsenzveranstaltungenUmfang (ECTS)
90 h 30 h 3 CP

Inhalte, Lernergebnisse und Voraussetzungen

Inhalt

i. The first part is devoted to introducing the basic mathematical framework for the study of quantum spin systems in a form suitable for applications in condensed matter physics as well as in quantum information and computation theory. This includes the construction of infinite systems by taking the thermodynamic limit, Hilbert space techniques based on the GNS representation, Lieb-Robinson bounds,a survey of the main questions the theory aims to address, and a discussion of several important model Hamiltonians. ii. The introduction of the AKLT model in 1988 by Affeck, Kennedy, Lieb, and Tasaki set in motion a series of new developments in the study of quantum spin systems that continue to have a profound impact on research on quantum spin models today. We will discuss the theory of Matrix Product States (aka Finitely Correlated States), Tensor Networks, the Density Matrix Renormalization Group, and techniques to estimate the spectral gap above the ground state. iii. The third part of the course will focus on specific properties of gapped ground states and their phase structure, guided by the analysis of specific models. This will include models with topological order. In each case we will study the ground states, the spectral gap above the ground state and the nature of the elementary excitations. Of particular interest are the anyonic excitations associated with topological order in two dimensional models.

Lernergebnisse

Students will master the foundations of the mathematical theory of quantum spin systems and will become familiar with a number of important examples of such systems and with the central questions of the field. They will be able to formulate physically relevant properties in mathematically precise terms and be able to demonstrate this knowledge by solving problems related to the material.

Voraussetzungen

The main mathematical prerequisite is familiarity with the basic elements of linear operators on Hilbert spaces. Some background in the elements of quantum mechanics will also be helpful.

Lehrveranstaltungen, Lern- und Lehrmethoden und Literaturhinweise

Lehrveranstaltungen und Termine

ArtSWSTitelDozent(en)Termine
VO 2 Quantum Spin Systems Nachtergaele, B. Dienstag, 10:15–11:45
Donnerstag, 10:15–11:45

Lern- und Lehrmethoden

lecture

Medienformen

blackboard

Literatur

Lecture notes will be made available as the course progresses. These will also include references to some additional literature.

Modulprüfung

Beschreibung der Prüfungs- und Studienleistungen

Students will be evaluated in a written exam (120 minutes). Because problem solving questions probe the depth of understanding most directly, the majority of the exam questions will be of that type. The use of course notes distributed by the instructor in association with the lectures will be allowed during the exam.

Wiederholbarkeit

Eine Wiederholungsmöglichkeit wird am Semesterende angeboten.

Kondensierte Materie

Wenn Atome sich zusammen tun, wird es interessant: Grundlagenforschung an Festkörperelementen, Nanostrukturen und neuen Materialien mit überraschenden Eigenschaften treffen auf innovative Anwendungen.

Kern-, Teilchen-, Astrophysik

Ziel der Forschung ist das Verständnis unserer Welt auf subatomarem Niveau, von den Atomkernen im Zentrum der Atome bis hin zu den elementarsten Bausteinen unserer Welt.

Biophysik

Biologische Systeme, vom Protein bis hin zu lebenden Zellen und deren Verbänden, gehorchen physikalischen Prinzipien. Unser Forschungsbereich Biophysik ist deutschlandweit einer der größten Zusammenschlüsse in diesem Bereich.