Fourieranalysis
Fourier Analysis

Modul MA4064

Dieses Modul wird durch Fakultät für Mathematik bereitgestellt.

Diese Modulbeschreibung enthält neben den eigentlichen Beschreibungen der Inhalte, Lernergebnisse, Lehr- und Lernmethoden und Prüfungsformen auch Verweise auf die aktuellen Lehrveranstaltungen und Termine für die Modulprüfung in den jeweiligen Abschnitten.

Basisdaten

MA4064 ist ein Semestermodul in Englisch auf Master-Niveau das im Sommersemester angeboten wird.

Das Modul ist Bestandteil der folgenden Kataloge in den Studienangeboten der Physik.

  • Allgemeiner Katalog der nichtphysikalischen Wahlfächer
GesamtaufwandPräsenzveranstaltungenUmfang (ECTS)
150 h 45 h 5 CP

Inhalte, Lernergebnisse und Voraussetzungen

Inhalt

1. Fourier series. Short review of the classical convergence theorem of Fourier series of Hölder continuous functions. L^2 convergence of Fourier series of L^2 functions and isometry between L^2 and l^2. Regularity and Fourier decay. Selected applications of Fourier series. 2. Fourier transform. Definition on L^1(R^n) and basic properties (inversion formula; behaviour under multiplication, convolution, differentiation). Definition on L^2 and Plancherel's formula. The space of tempered distributions and Fourier calculus on distributions. Periodic arrays of delta functions and Poisson summation. Selected applications of the Fourier transform, e.g. solution of partial differential equations, Heisenberg uncertainty, X-ray crystallography, Shannon sampling and digitalization of acoustic signals, construction of wavelets.

Lernergebnisse

After participating in the module, students understand and are able to apply the key mathematical principles of Fourier analysis on euclidean space. They have also obtained some insight into the use of Fourier analysis in contemporary areas of mathematics and the sciences.

Voraussetzungen

MA2003 Measure and Integration

Lehrveranstaltungen, Lern- und Lehrmethoden und Literaturhinweise

Lehrveranstaltungen und Termine

Lern- und Lehrmethoden

Vorlesung, Übung, Bearbeitung von Hausaufgaben

Medienformen

Tafel, Übungsblätter

Literatur

G. Friesecke, Lectures on Fourier Analysis, Vorlesungsskript (Warwick University, 2007). R. Strichartz, A guide to distribution theory and the Fourier transform (CRC Press, 1994). M. Reed, B. Simon, Methods of Modern Mathematical Physics II: Fourier Analysis, Self-Adjointness (Academic Press, 1975).

Modulprüfung

Beschreibung der Prüfungs- und Studienleistungen

Klausur

Wiederholbarkeit

Eine Wiederholungsmöglichkeit wird am Semesterende angeboten.

Aktuell zugeordnete Prüfungstermine

Derzeit sind in TUMonline die folgenden Prüfungstermine angelegt. Bitte beachten Sie neben den oben stehenden allgemeinen Hinweisen auch stets aktuelle Ankündigungen während der Lehrveranstaltungen.

Titel
ZeitOrtInfoAnmeldung
Fourieranalysis
Terminabsprache mit Prüfer bis 15.1.2017 (Abmeldung bis 11.2.2017)

Kondensierte Materie

Wenn Atome sich zusammen tun, wird es interessant: Grundlagenforschung an Festkörperelementen, Nanostrukturen und neuen Materialien mit überraschenden Eigenschaften treffen auf innovative Anwendungen.

Kern-, Teilchen-, Astrophysik

Ziel der Forschung ist das Verständnis unserer Welt auf subatomarem Niveau, von den Atomkernen im Zentrum der Atome bis hin zu den elementarsten Bausteinen unserer Welt.

Biophysik

Biologische Systeme, vom Protein bis hin zu lebenden Zellen und deren Verbänden, gehorchen physikalischen Prinzipien. Unser Forschungsbereich Biophysik ist deutschlandweit einer der größten Zusammenschlüsse in diesem Bereich.