Scientific Computing II
Module IN2141
This module handbook serves to describe contents, learning outcome, methods and examination type as well as linking to current dates for courses and module examination in the respective sections.
Module version of WS 2017/8 (current)
There are historic module descriptions of this module. A module description is valid until replaced by a newer one.
Whether the module’s courses are offered during a specific semester is listed in the section Courses, Learning and Teaching Methods and Literature below.
available module versions | ||
---|---|---|
WS 2017/8 | SS 2012 | WS 2011/2 |
Basic Information
IN2141 is a semester module in English language at Master’s level which is offered in summer semester.
This Module is included in the following catalogues within the study programs in physics.
- Catalogue of non-physics elective courses
Total workload | Contact hours | Credits (ECTS) |
---|---|---|
150 h | 60 h | 5 CP |
Content, Learning Outcome and Preconditions
Content
computing:
- Iterative solution methods for large, sparse linear systems (relaxation methods, geometric and algebraic multigrid methods, Krylov-subspace methods, preconditioning techniques); intuitive introduction, mathematical performance analysis and sample computations
- Molecular dynamics simulation as a case study for the particle-based simulation approaches in scientific computing (overview; modelling of molecular dynamics; discretization approaches; efficient implementation of all-to-all interaction; techniques for parallelization)
Learning Outcome
Preconditions
Courses, Learning and Teaching Methods and Literature
Courses and Schedule
Type | SWS | Title | Lecturer(s) | Dates | Links |
---|---|---|---|---|---|
VI | 4 | Scientific Computing II (IN2141) | Bader, M. |
Tue, 10:00–12:00, MI HS2 Fri, 14:00–16:00, MI HS2 and singular or moved dates |
eLearning documents |
Learning and Teaching Methods
Media
Literature
- J.R. Shewchuk. An Introduction to the Conjugate Gradient Method Without the Agonizing Pain. Edition 1.25. 1994.
- W. Hackbusch. Iterative Solution of Large Sparse Systems of Equations. Springer, 1993.
- Y. Saad. Iterative Methods for sparse linear systems, SIAM 2003.
- M. Griebel, S. Knapek, G. Zumbusch, and A. Caglar. Numerical Simulation in Molecular Dynamics. Springer, 2007.
- M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Oxford University Press, 2003.
- D. Frenkel and B. Smith. Understanding Molecular Simulation from Algorithms to ASpplications. Academic Press (2nd ed.), 2002.
- R. J. Sadus. Molecular Simulation of Fluids; Theory, Algorithms and Object-Orientation. Elsevier, 1999.
- D. Rapaport. The art of molecular dynamics simulation. Camebridge University Press, 1995.
Module Exam
Description of exams and course work
Exam Repetition
The exam may be repeated at the end of the semester.