Advanced Electromagnetics

Modul EI7476

Dieses Modul wird durch Fakultät für Elektrotechnik und Informationstechnik bereitgestellt.

Diese Modulbeschreibung enthält neben den eigentlichen Beschreibungen der Inhalte, Lernergebnisse, Lehr- und Lernmethoden und Prüfungsformen auch Verweise auf die aktuellen Lehrveranstaltungen und Termine für die Modulprüfung in den jeweiligen Abschnitten.

Basisdaten

EI7476 ist ein Semestermodul in Englisch auf Master-Niveau das im Wintersemester angeboten wird.

Das Modul ist Bestandteil der folgenden Kataloge in den Studienangeboten der Physik.

  • Allgemeiner Katalog der nichtphysikalischen Wahlfächer
GesamtaufwandPräsenzveranstaltungenUmfang (ECTS)
180 h 75 h 6 CP

Inhalte, Lernergebnisse und Voraussetzungen

Inhalt

Mathematical basics on vector spaces, distributions, and complex analysis;
Field solutions by Green's functions;
Orthogonal series representations of Green's functions;
Solution of the Laplace-/Helmholtz equation in Cartesian, cylindrical, and spherical coordinates;
Dyadic Green's functions and vector Huygens principle; Surface and volume integral equation formulations of radiation and scattering problems;
Vector wave solutions in Cartesian and spherical coordinates: Mie series solutions;
Dyadic Green's functions in planar multilayered media:
The spectral domain immitance approach, transmission line representation, Sommerfeld integral representation, Michalski's mixed potential representation, dipole over a halfspace (earth), surface waves and lateral waves;
Basics of Variational Calculus;
Asymptotic expansion of radiation integrals: Method of Stationary Phase, saddle points and the nethod of steepest descent;
The Multilevel Fast Multipole Method and hierarchical field representations;

Lernergebnisse

At the end of the module students understand advanced analytical methods for the solution of electromagnetic field problems. They are able to apply these methods to develop field solutions for modified geometrical and material configurations within the scope of the methods. They understand the relationship and the mutual utilization of mathematical and physical considerations in order to develop field solutions of practical relevance. They understand the importance of analytical concepts for the development of advanced numerical methods in electromagnetics.

Voraussetzungen

Mathematics, Electrodynamics

The successful participation in the following modules is recommended:
- Technische Felder und Wellen

Lehrveranstaltungen, Lern- und Lehrmethoden und Literaturhinweise

Lehrveranstaltungen und Termine

ArtSWSTitelDozent(en)Termine
VI 5 Advanced Electromagnetics Mo, 08:45–09:30, 0105.04.512
Mo, 09:45–11:15, 0105.04.512
Do, 11:30–13:00, 0105.04.512

Lern- und Lehrmethoden

Learning method:
In addition to the individual methods of the students, consolidated knowledge is aspired by repeated lessons in excercises and tutorials.

Teaching method:
During the lectures students are instructed in a teacher-centered style. The tutorials are held in a student-centered style. The students are expected to give tutorials themselves.

Medienformen

- Presentation slides
- Lecture documents
- Tutorial problems and solutions
- Project work including presentations

Literatur

- Jin, J.-M.: Theory and Computation of Electromagnetic Fields, Wiley 2010.
- Chew, W.C.: Waves and Fields in Inhomogeneous Media,IEEE Press, 1995
- Jackson, J.D.: Classical Electrodynamics, Wiley, 1962
- Tai, C.-T.: Dyadic Green Functions in Electromagnetic Theory, IEEE Press, 1994
- Senior, T.B.A., Volakis, J.L.: Approximate Boundary Conditions in Electromagnetics, IEE Series on Electromagnetic Waves, 1995
- Collin, R.E.: Field Theory of Guided Waves, IEEE Press, 1991
- Felsen, L.B., Marcuvitz, N.: Radiation and Scattering of Waves, IEEE Press, 1994

Modulprüfung

Beschreibung der Prüfungs- und Studienleistungen

The examination is adapted to the learning outcomes and consists of an oral examination of 25 min duration.

In the oral examination, students demonstrate by answering questions under time pressure and without helping material the theoretical knowledge of advanced methods for the solution of electrostatic as well as acoustic and electromagnetic field and wave problems. By describing solution concepts for particular field problems, they demonstrate the understanding of the relevant solution principles.

During the semester, students get the opportunity to participate in voluntary project tasks, in which they can solve different field problems in more detail. These project tasks can be used to improve the final grade.

The final grade consists of the grade of the written exam (100%).

Each of the overal grades for the project and homeworks tasks will count with 20% of the final grade, if the average grade of the written exam (60%), of the homework grade (20%) and of the project task grade (20%) will lead to an improvement of the grade.

Wiederholbarkeit

Eine Wiederholungsmöglichkeit wird im Folgesemester angeboten.

Kondensierte Materie

Wenn Atome sich zusammen tun, wird es interessant: Grundlagenforschung an Festkörperelementen, Nanostrukturen und neuen Materialien mit überraschenden Eigenschaften treffen auf innovative Anwendungen.

Kern-, Teilchen-, Astrophysik

Ziel der Forschung ist das Verständnis unserer Welt auf subatomarem Niveau, von den Atomkernen im Zentrum der Atome bis hin zu den elementarsten Bausteinen unserer Welt.

Biophysik

Biologische Systeme, vom Protein bis hin zu lebenden Zellen und deren Verbänden, gehorchen physikalischen Prinzipien. Unser Forschungsbereich Biophysik ist deutschlandweit einer der größten Zusammenschlüsse in diesem Bereich.