Nanotechnology for Energy Systems

Module EI7267

This Module is offered by TUM Department of Electrical and Computer Engineering.

This module handbook serves to describe contents, learning outcome, methods and examination type as well as linking to current dates for courses and module examination in the respective sections.

Module version of SS 2015 (current)

There are historic module descriptions of this module. A module description is valid until replaced by a newer one.

available module versions
SS 2015WS 2012/3

Basic Information

EI7267 is a semester module in English language at Master’s level which is offered in summer semester.

This Module is included in the following catalogues within the study programs in physics.

  • Catalogue of non-physics elective courses
Total workloadContact hoursCredits (ECTS)
150 h 60 h 5 CP

Content, Learning Outcome and Preconditions

Content

Introduction to nanotechnology. Nanomaterials and nanosystems for energy applications. Examples of nanotechnology energy production, energy storage, energy harvesting, and high voltage technologies. A look into the future: electro and photocatalysis, hydrogen production and storage. Economical implications of nanotechnology in the energy field.

Learning Outcome

After successful completion of the module, students have acquired basic understanding of nanotechnology system with special emphasis to those which are relevant for energy applications as well as practical knowledge for instance about characterizations of nanoparticles that are used as active and/or electrode materials in batteries and solar cells. They know how to measure the performance of different types of solar cells. At the end of the module the students are able to analyze and evaluate energy related nanotechnology systems. They know how to present the results of their experiments in form of a scientific presentation and have learnt how to organize and present their work.

Preconditions

The student should have followed basic courses in engineering, materials science and/or physics.

Courses, Learning and Teaching Methods and Literature

Courses and Schedule

ArtSWSTitelDozent(en)Termine
VU 4 Nanotechnology for Energy Systems Lugli, P.
Mitwirkende: Becherer, M.Loghin, F.
Mittwoch, 13:15–14:45
Mittwoch, 14:45–17:15
sowie einzelne oder verschobene Termine

Learning and Teaching Methods

The course will provide the basis for the understanding of nanotechnology systems for energy applications by lectures and provide some practical experience on how to handle such system experimentally in labs conducted in parallel to the lectures. Concerning the lab, small groups will work in a coordinated fashion towards the design, realization and/or characterization of different nanotechnological systems (e.g. solar cells or energy harvesters). In addition, the students will learn how to prepare, organize and carry out a scientific presentation.

Media

The following kinds of media are used: - Presentations - Lecture notes - Black board

Literature

The following literature is recommended: - Class Notes - Additional reading material, class notes and useful web sources will be provided to the students by a sharepoint system

Module Exam

Description of exams and course work

The examination consists of three parts: The first part, covering the 2 hours lectures/week will be examined by a written test by the middle of the semester. The test will consist of several questions where the students have to prove knowledge related competencies. This part will count for 50% of the final grade. In the second part each student will participate in one simulation activity (in groups of 2 people) or in a literature review (alone), that will start at the beginning of the semester and will have to be finished by the middle of the semester. An oral presentation will conclude this part, which will count for 20% of the final grade. By the simulation and literature review part the student will learn to analyze and critically evaluate systems related to energy applications in the field of nanotechnology. In the third part each student will participate in one experimental activity (in groups of 4 people) that will start at the middle of the semester and will have to be finished by the end of lecturing period. A group oral presentation will conclude this part, which will count for 30% of the final grade. By attending the experimental part of the module, the students will learn to apply and to create own systems and present their gained results in a scientific form.

Exam Repetition

There is a possibility to take the exam in the following semester.

Condensed Matter

When atoms interact things can get interesting. Fundamental research on the underlying properties of materials and nanostructures and exploration of the potential they provide for applications.

Nuclei, Particles, Astrophysics

A journey of discovery to understanding our world at the subatomic scale, from the nuclei inside atoms down to the most elementary building blocks of matter. Are you ready for the adventure?

Biophysics

Biological systems, from proteins to living cells and organisms, obey physical principles. Our research groups in biophysics shape one of Germany's largest scientific clusters in this area.