Supramolecular Chemistry (Supramolecular Chemistry and Supramolecular materials)
Module CH1214
This module handbook serves to describe contents, learning outcome, methods and examination type as well as linking to current dates for courses and module examination in the respective sections.
Module version of WS 2017/8
There are historic module descriptions of this module. A module description is valid until replaced by a newer one.
Whether the module’s courses are offered during a specific semester is listed in the section Courses, Learning and Teaching Methods and Literature below.
available module versions | |
---|---|
SS 2021 | WS 2017/8 |
Basic Information
CH1214 is a semester module in English language at Master’s level which is offered in summer semester.
Total workload | Contact hours | Credits (ECTS) |
---|---|---|
120 h | 30 h | 4 CP |
Content, Learning Outcome and Preconditions
Content
2) Supramolecular chemistry; Nobel Prize in 1987
3) Basics: Molecular non-covalent interactions
4) Basics: Thermodynamics
5) Catenanes, rotaxanes and knots
6) An introduction into the self-assembly of molecules.
7) Self-assembly: Amphiphiles
8) Self-assembly: Peptides
9) Self-assembly: Liquid Crystals
10) Non-equilbrium self-assembly: energy landscapes of self-assembly
11) Non-equilbrium self-assembly: active self-assembly
12) Supramolecular Materials: self-assembly into structures with function.
13) Supramolecular Materials: self-assembled hydrogels
14) Molecular machines; Nobel Prize 2016
15) Exam
Learning Outcome
- Recall and understand the non-covalent interactions between molecules.
- Recall and understand the thermodynamic driving force involved in assembly of supramolecular structures.
- Molecularly design an amphiphile
- Molecular design a self-assembly peptides
- Molecularly design liquid crystals
- Recall functions of self-assembled structures
- Recall mechanisms involved in molecular machines.
Preconditions
Courses, Learning and Teaching Methods and Literature
Courses and Schedule
Type | SWS | Title | Lecturer(s) | Dates | Links |
---|---|---|---|---|---|
VO | 2 | Supramolecular Chemistry | Boekhoven, J. |
eLearning |
Learning and Teaching Methods
Media
Literature
Module Exam
Description of exams and course work
- Recall and understand the non-covalent interactions between molecules.
- Recall and understand the thermodynamic driving force involved in assembly of supramolecular structures.
- Molecularly design an amphiphile
- Molecular design a self-assembly peptides
- Molecularly design liquid crystals
- Recall functions of self-assembled structures
- Recall mechanisms involved in molecular machines.
The examination of this course will take place in the form of a 90 minutes written exam (70%) and a presentation by the students on a case study (30%).
Exam Repetition
The exam may be repeated at the end of the semester.