Aufgabe 1: Lösen Sie die folgenden LGS:

1.
\[
\begin{align*}
2x + y - 2z + 3w &= 1 \\
3x + 2y - z + 2w &= 4 \\
3x + 3y + 3z - 3w &= 5
\end{align*}
\]

2.
\[
\begin{align*}
x + 2y - 3z &= 4 \\
x + 3y + z &= 11 \\
2x + 5y - 4z &= 13 \\
2x + 6y + 2z &= 22
\end{align*}
\]

3.
\[
\begin{align*}
x + 2y - 2z + 3w &= 2 \\
2x + 4y - 3z + 4w &= 5 \\
5x + 10y - 8z + 11w &= 12
\end{align*}
\]

Aufgabe 2: Entscheiden sie, ob folgende Aussagen wahr oder falsch sind, geben Sie eine kurze Begründung oder ein Gegenbeispiel.

Aufgabe 3: Zeigen Sie anhand eines Beispiels, dass das Matrixprodukt nicht kommutativ ist.
Aufgabe 4:

1. Berechnen Sie das Produkt $A \cdot B$ für

\[
A = \begin{pmatrix}
3 & 4 & -2 \\
4 & -1 & 1 \\
2 & 2 & -3 \\
1 & 5 & 2
\end{pmatrix}, \quad B = \begin{pmatrix}
4 & 3 \\
1 & 2 \\
7 & -5
\end{pmatrix}
\]

2. Es seien die Matrizen

\[
A = \begin{pmatrix}
a_{11} & 2 & 3 \\
a_{21} & 1 & 3 \\
a_{31} & -1 & -2
\end{pmatrix}, \quad B = \begin{pmatrix}
2 & -2 & 1 \\
0 & b_{22} & 2 \\
0 & 1 & 2
\end{pmatrix}, \quad C = \begin{pmatrix}
2 & -3 & c_{13} \\
4 & -3 & c_{23} \\
0 & 0 & c_{33}
\end{pmatrix}
\]

gegeben mit $A \cdot B = C$. Bestimmen Sie a_{ij}, b_{ij}, c_{ij}.

Aufgabe 5: Bringen Sie die folgenden Matrizen in Stufenform und geben Sie die Lösungsmenge an.

\[
\begin{pmatrix}
2 & 4 & 10 \\
3 & 6 & 15
\end{pmatrix}, \quad \begin{pmatrix}
2 & 3 & -2 & 5 \\
1 & -2 & 3 & 2 \\
4 & -1 & 4 & 1
\end{pmatrix}, \quad \begin{pmatrix}
2 & 1 & -2 & 10 \\
3 & 2 & 2 & 1 \\
5 & 4 & 3 & 4
\end{pmatrix}
\]

Aufgabe 6: Invertieren Sie die folgenden Matrizen:

\[
\begin{pmatrix}
1 & 0 & 2 \\
2 & -1 & 3 \\
4 & 1 & 8
\end{pmatrix}, \quad \begin{pmatrix}
-1 & 2 & -3 \\
2 & 1 & 0 \\
4 & -2 & 5
\end{pmatrix}, \quad \begin{pmatrix}
2 & 1 & -1 \\
0 & 2 & 1 \\
5 & 2 & -3
\end{pmatrix}, \quad \begin{pmatrix}
1 & 3 & 4 \\
3 & -1 & 6 \\
-1 & 5 & 1
\end{pmatrix}
\]

Aufgabe 7: Bestimmen Sie eine Basis für den Untervektorraum $U = \text{spann}$

\[
\begin{pmatrix}
1 \\
1 \\
0 \\
0
\end{pmatrix}, \quad \begin{pmatrix}
-4 \\
-11 \\
-4 \\
-3
\end{pmatrix}, \quad \begin{pmatrix}
1 \\
4 \\
6 \\
-3
\end{pmatrix}, \quad \begin{pmatrix}
0 \\
1 \\
0 \\
1
\end{pmatrix}, \quad \begin{pmatrix}
2 \\
0 \\
-1 \\
1
\end{pmatrix}, \quad \begin{pmatrix}
0 \\
1 \\
1 \\
0
\end{pmatrix}
\]

von \mathbb{R}^4 und geben Sie die Dimension von U an.

Gleiche Aufgabe für:

\[
U = \text{spann} \begin{pmatrix}
1 \\
-4 \\
-2
\end{pmatrix}, \quad \begin{pmatrix}
-1 \\
5 \\
3
\end{pmatrix}, \quad \begin{pmatrix}
1 \\
-2 \\
0
\end{pmatrix}, \quad \begin{pmatrix}
-1 \\
4 \\
2
\end{pmatrix}, \quad \begin{pmatrix}
1 \\
-3 \\
-1
\end{pmatrix}
\]

\[2\]
Aufgabe 8: Gegeben seien die Untervektorräume

\[U_1 = span \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix}, \begin{pmatrix} -1 \\ 4 \\ -4 \end{pmatrix} \] und \[U_2 = span \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} \] des \(\mathbb{R}^3 \). Geben Sie einen Vektor \(v \in \mathbb{R}^3 \) mit der Eigenschaft \(U_1 \cap U_2 = span(v) \).

Aufgabe 9: Bestimmen Sie den Rang der folgenden Matrizen:

\[
A = \begin{pmatrix}
1 & 2 & 3 & 1 & 2 & 3 \\
2 & 4 & 6 & 1 & 2 & 5 \\
3 & 6 & 9 & 4 & 8 & 3
\end{pmatrix},
\quad
B = \begin{pmatrix}
1 & 3 \\
0 & -2 \\
5 & -1 \\
-2 & 3
\end{pmatrix}
\]