Aufgabe 1

a) (a) Abgeschlossenheit:

\[A_1 + A_2 = \begin{pmatrix} a_1 + a_2 & b_1 + b_2 \\ b_1 + b_2 & c_1 + c_2 \end{pmatrix} \in S_2 \]

(b) Assoziativität und Kommutativität folgen direkt aus Ass. und Komm. der skalaren Addition.

(c) Neutrales Element:

\[\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \in S_2 \]

(d) Inverses:

\[\begin{pmatrix} -a & -b \\ -b & -c \end{pmatrix} \in S_2 \]

b) Die Vektorraumaxiome sind offensichtlich erfüllt.

Dimension: 3, Basis z.B.:

\[B = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\} \]

Aufgabe 2

a) –

b) \(\{3n + 10m \mid n, m \in \mathbb{Z}\} = \mathbb{Z} \)

c) \(\mathbb{Z} \)

d) \(\mathbb{Q}^+ = \{q \in \mathbb{Q} \mid q > 0\} \)

e) \(\{(1/2)^n \mid n \in \mathbb{N}\} \cup \{2^n \mid n \in \mathbb{N}\} = \{2^z \mid z \in \mathbb{Z}\} \)

f) \(\{w\} \)

Aufgabe 3

a) Nein! Nicht abgeschlossen in der Skalarmultiplikation mit \(\lambda \in \mathbb{R} \):

\[\frac{1}{2} \begin{pmatrix} 3 \\ 4 \end{pmatrix} = \begin{pmatrix} 3/2 \\ 2 \end{pmatrix} \notin M_1 \]

b) Nein!

\[-1 \cdot \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} -1 \\ -2 \end{pmatrix} \notin M_2 \]

c) Ja! Die Umkehrabbildung ist eindeutig auf ganz \(\mathbb{R}^2 \)

\[\begin{pmatrix} \mu \\ \lambda \end{pmatrix} = \begin{pmatrix} -x^{1/3} \\ y + x^{1/3} \end{pmatrix} \]

es ist also \(M_3 = \mathbb{R}^2 \).
d) Nein!
\[(x^7) - (x^7) = 0 \notin M_4\]

e) Nein! \(0 \notin M_5\)

Aufgabe 4

a) \(d = 2\) Jeweils zwei der drei Vektoren sind linear unabhängig, eine Basis bilden zB:

\[B = \{ \begin{pmatrix} 1 \\ 0 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix} \}\]

b) \(d = 2\), da nur zwei Koordinaten frei wählbar (\(z\) ist dann festgelegt, bringt also keinen zusätzlichen Freiheitsgrad). Zum Erhalt zweier linear unabhängiger Vektoren wählte zB \((x, y) = (1, 0), (0, 1)\):

\[B = \{ \begin{pmatrix} 1 \\ 0 \\ 3 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \}\]

c) \(d = 3\), da die drei Vektoren linear unabhängig sind. Basis zB:

\[B = \{ \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 3 \\ 2 \end{pmatrix} \}\]

d) \(d = 1\) U beschreibt die Winkelhalbierende. Basis zB:

\[B = \{ \begin{pmatrix} 1 \\ 1 \end{pmatrix} \}\]

e) \(d = 2\), \(B = \{ \cos(x), \sin(x) \}\)

f) \(d = 4\), \(B = \{ x^3, x^2, x, 1 \}\)

Aufgabe 5

a) korrekt ist nur dim(span(M)) = 4

b) zB \(B = \{ v_1, v_2, v_3, v_5 \}\) oder \(B = \{ e_1, e_2, e_3, e_4 \}\) (macht allerdings Aufgabe c etwas langweilig ;)

2
c) Wende Gram-Schmidt Verfahren auf \(B = \{v_1, v_2, v_3\} \) an:

\[
\begin{align*}
 w_1 &= \frac{v_1}{\|v_1\|} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \\
 \tilde{w}_2 &= v_2 - (w_1, v_2)w_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} - \frac{2}{\sqrt{2} \sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix} \\
 w_2 &= \frac{1}{\sqrt{8}} \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \\
 \tilde{w}_3 &= \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} = w_3 \\
 \tilde{w}_4 &= \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} - 0 = \frac{1}{2} \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix} = w_4
\end{align*}
\]

Es ist also

\[
B' = \left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}
\]

Aufgabe 6

a) Für \(\alpha = 4 \) ist \(v_3 = v_1 + v_2 \), es ist also \(d = 2 \). Für \(\alpha \neq 4 \) ist \(d = 3 \).

b) Gram-Schmidt mit \(\{v_1, v_2\} \):

\[
\begin{align*}
 w_1 &= \frac{1}{\sqrt{5}} \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \\
 \tilde{w}_2 &= \begin{pmatrix} -4/5 \\ 2/5 \\ 1 \end{pmatrix} \\
 w_2 &= \frac{\sqrt{5}}{3} \begin{pmatrix} -4/5 \\ 2/5 \\ 1 \end{pmatrix} \\
 B' &= \left\{ \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, \frac{\sqrt{5}}{3} \begin{pmatrix} -4/5 \\ 2/5 \\ 1 \end{pmatrix} \right\}
\end{align*}
\]

Aufgabe 7

a)

\[3 \circ_6 2 = 0 \notin \mathbb{Z}_6 \setminus \{0\} \]
b) p muss primzahl sein. Andernfalls besitzt es Teiler $a, b \in \mathbb{Z}_p$ mit $a \cdot b = p$ und deshalb $a \odot_p b = 0 \notin \mathbb{Z}_p \setminus \{0\}$.

c) Da es für jede der n Koordinaten p mögliche Werte gibt ist die Gesamtzahl der Elemente p^n. Da sich durch Multiplikation mit jedem $\lambda \in \mathbb{Z}_p$, $\lambda \neq 0$ ein Vielfaches ergibt erhält $p - 1$ unterschiedliche Vielfache.

d) Ein 1-dimensionaler Untervektorraum besteht aus den Vielfachen eines Vektors $v \neq \vec{0}$. Um also die Anzahl der verschiedenen Untervektorräume zu erhalten, teilt man die Zahl der (von Null verschiedenen) Vektoren in \mathbb{Z}_p^n durch die Zahl ihrer Vielfachen:

$$\#U = \frac{p^n - 1}{p - 1}$$

Klausuraufgabe:

$$\#U_5^3 = \frac{124}{4} = 31$$

e) zB:

$$B = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$$

Aufgabe 8

a) Nein.

$$\|2x\| = 2\sqrt{x_1^2 + 4x_2^2 + x_3^2} \neq 2\|x\|$$

b) Nein.

$$\left\| \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix} \right\| = -1 < 0$$

c) Nein.

$$\left\| \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\| = 0$$

d) Ja. (p-Norm mit $p = 4$)