M.Sc. Felix Kemeth

+49 89 289-12526
Visitenkarte in TUMonline
Chemische Physik fern des Gleichgewichts

Ausgeschriebene Angebote für Abschlussarbeiten

A Study of Localized Turbulence in oscillatory media using simulation and data mining tools

Localized turbulence is a state of coexisting turbulent "bubbles" in an otherwise homogeneously ocsillating background. This state can be observed in globally coupled partial differential equations with oscillatory dynamics, such as the complex Ginzburg-Landau equation.
Due to its intricate behavior, the localized turbulence raises many, yet unanswered, questions: What are the mechanisms causing this behavior?
From what other dynamical states, such as purely synchronous dynamics and spatiotemporal chaos, does it bifurcate off?
The scope of this bachelor thesis is to address these questions using numerical simulations and data mining tools. In particular, the boarders of this dynamical state in parameter space shall be
explored numerically, and investigated using algorithms recently developed in our group.

L. Schmidt and K. Krischer, “Chimeras in globally coupled oscillatory
systems: From ensembles of oscillators to spatially continuous media,”
Chaos 25, 064401 (2015).

FP. Kemeth et al. "A classification scheme for chimera states,"
Chaos 26, 10.1063 (2016)

geeignet als
  • Bachelorarbeit Physik
Themensteller(in): Katharina Krischer
Die Dynamik global-gekoppelter Stuart-Landau Oszillatoren

Coupled oscillators appear in many physical and biological systems, such as firing neurons in the brain or the pulsation of the human heart.
If the coupling diffuses fast, it can be approximated through a global coupling, and, as the simplest form, through the mean of the oscillator ensemble. It is known that such a coupling can lead
to a large variety of different dynamical states, such as secondary oscillations, clustering, chaotic dynamics or 'partial' chaos.
However, even the case of two mean-coupled oscillators is not well understood. Using two limit-cycle oscillators and coupling them through the mean field, the objective of this thesis is to find
all bifurcations occurring in such a system. We believe that those bifurcations are universal in the sense that they will also appear in larger ensembles of coupled oscillators, facilitating the understanding of coupled oscillators in general. Therefore, the results of two mean-coupled oscillators can then be extended to larger ensembles.

Requirements for this thesis are a basic understanding of nonlinear dynamics and a solid background in PYTHON. In addition, since many bifurcations cannot be obtained analytically, numerical continuation software such as AUTO has to be exploited, which requires some basic programming skills.
If you are interested, please contact f.kemeth@tum.de or krischer@tum.de.

geeignet als
  • Masterarbeit Physik der kondensierten Materie
  • Masterarbeit Kern-, Teilchen- und Astrophysik
  • Masterarbeit Biophysik
  • Masterarbeit Applied and Engineering Physics
Themensteller(in): Katharina Krischer

Kondensierte Materie

Wenn Atome sich zusammen tun, wird es interessant: Grundlagenforschung an Festkörperelementen, Nanostrukturen und neuen Materialien mit überraschenden Eigenschaften treffen auf innovative Anwendungen.

Kern-, Teilchen-, Astrophysik

Ziel der Forschung ist das Verständnis unserer Welt auf subatomarem Niveau, von den Atomkernen im Zentrum der Atome bis hin zu den elementarsten Bausteinen unserer Welt.


Biologische Systeme, vom Protein bis hin zu lebenden Zellen und deren Verbänden, gehorchen physikalischen Prinzipien. Unser Forschungsbereich Biophysik ist deutschlandweit einer der größten Zusammenschlüsse in diesem Bereich.