M.Sc. Fabian Flassig

Lehrveranstaltungen und Termine

Ausgeschriebene Angebote für Abschlussarbeiten

Probing multiphoton wave packets using superconducting nanowire detectors

Within the last years, superconducting single photon detectors (SSPDs) have proven to be one of the most versatile detectors for visible to infrared wavelengths. They outperform other single photon detectors in terms of detection efficiency (ca 90%), timing resolution (<20ps) and dark count rates (<1cps) and can be modified to detect the number of photons simultaneously hitting the detector (photon-number resolution, PNR) [1]. They can be integrated into on-chip photonic circuits, making them highly promising for future chip-based optical quantum applications.

In this project we aim at adding photon-number resolving capabilities to optical waveguide-integrated SSPDs to detect multi-photon states in optical cavities. We will use established techniques to sputter thin NbN superconducting films and pattern them using e-beam lithography to fabricate the superconducting detectors. These detectors will be tested and characterised at low temperatures in an optical microscopy setup to probe the fundamental detection mechanisms. Furthermore, the detector design will be optimised concerning the photon number resolution capability. In an ambitious second step we will modify the detector design to include an optical gating in the detector and perform pump-probe spectroscopy-like characterisation of this new kind of devices.

During the project, you will work in close collaboration with a Ph.D. student, therefore, teamwork is crucial on this project. Some experience in the areas of optics, electronics, programming or cleanroom fabrication will be beneficial, but secondary to your personal motivation and commitment. 

Applications should be sent to Prof. Finley (finley@wsi.tum.de) including Fabian Flassig on c.c. (fabian.flassig@wsi.tum.de). Please include your CV, a copy of your Bachelor Thesis and a transcript of your grades.

[1] F. Natarajan et al. Supercond. Sci. Technol. 25 063001 (2012)

geeignet als
  • Masterarbeit Physik der kondensierten Materie
Themensteller(in): Jonathan Finley

Kondensierte Materie

Wenn Atome sich zusammen tun, wird es interessant: Grundlagenforschung an Festkörperelementen, Nanostrukturen und neuen Materialien mit überraschenden Eigenschaften treffen auf innovative Anwendungen.

Kern-, Teilchen-, Astrophysik

Ziel der Forschung ist das Verständnis unserer Welt auf subatomarem Niveau, von den Atomkernen im Zentrum der Atome bis hin zu den elementarsten Bausteinen unserer Welt.


Biologische Systeme, vom Protein bis hin zu lebenden Zellen und deren Verbänden, gehorchen physikalischen Prinzipien. Unser Forschungsbereich Biophysik ist deutschlandweit einer der größten Zusammenschlüsse in diesem Bereich.