Dr. Friedemann Reinhard

Photo von Dr. Friedemann Reinhard.
Telefon
+49 89 289 12777
Raum
5112.02.313S
E-Mail
friedemann.reinhard@tum.de
Links
Homepage
Visitenkarte in TUMonline
Arbeitsgruppen
Halbleiter-Nanostrukturen und -Quantensysteme
Fakultät für Physik
Funktion
TUM Junior Fellow

Lehrveranstaltungen und Termine

Titel und Modulzuordnung
ArtSWSDozent(en)Termine
Quantensensorik
Zuordnung zu Modulen:
HS 2 Reinhard, F. Dienstag, 14:00–16:00

Ausgeschriebene Angebote für Abschlussarbeiten

Imaging of Neural Action Potentials by Quantum Sensors and/or Deep Learning

Our young lab is using solid state qubits to build sensors, e.g. for magnetic fields. We aim to apply them to various applications, with a particular focus on life sciences.

Most of our projects focus on microscopy methods based on magnetic resonance spectroscopy of small (sub-µm) samples.

We are seeking a MSc student to study a novel application, imaging of electric action potentials of neurons, the cells performing computation in the brain. This should involve the development of a new type of sensor, based on solid state quantum materials, smart signal processing by artificial neural networks, or a combination of both.

Techniques:

* You will learn to prepare microscopy samples of both solid state samples and cell cultures. 

* You will design an experiment to detect the weak optical signals from these samples in one of our existing microscope setups. This will involve development of advanced optics and control software.  

Depending on preference and success of the initial steps you will either

* Study fluoresent quantum materials like red fluorescent diamond and their response to external electric fields. 

* Develop signal processing protocols to enhance these signals in existing devices 

 

geeignet als
  • Masterarbeit Physik der kondensierten Materie
  • Masterarbeit Kern-, Teilchen- und Astrophysik
  • Masterarbeit Biophysik
  • Masterarbeit Applied and Engineering Physics
Themensteller(in): Friedemann Reinhard
Nuclear Magnetic Resonance Microscopy

Magnetic resonance imaging (NMR/MRI), is one of the most powerful techniques to record three-dimensional images of nearly arbitrary samples. Current standard setups, such as those found in hospitals, cannot record details smaller than 1mm.  

Our group aims to push MRI to a microscopy technique by improving its spatial resolution down to the sub-nm range, the scale of single atoms. This ambitious goal has recently become a realistic prospect by a new generation of quantum sensors for magnetic fields. They are based on the nitrogen-vacancy (NV) color defect in diamond and could detect fields as small as the NMR signal of a single molecule [1,2].

We are looking for a MSc student to develop such a magnetic resonance microscope with a resolution in the intermediate (100nm-1µm) range, higher than any conventional technique, but coarser than most of our other (nm-range) projects. 

Techniques:

* You will learn to fabricate microscale electromagnets in one of our clean rooms, and optimize our fabrication techniques for your project and others. 

* You will design a sensor chip for microscale NMR detection and upgrade software and optics of one of our setups to perform the experiment. 

* You will design, implement and analyze quantum control protocols to record microscale MRI images.

[1] T. Staudacher et al., Science 339, 561 (2013)

[2] H.J. Mamin et al., Science 339, 557 (2013)

 
geeignet als
  • Masterarbeit Physik der kondensierten Materie
  • Masterarbeit Biophysik
  • Masterarbeit Applied and Engineering Physics
Themensteller(in): Friedemann Reinhard

Kondensierte Materie

Wenn Atome sich zusammen tun, wird es interessant: Grundlagenforschung an Festkörperelementen, Nanostrukturen und neuen Materialien mit überraschenden Eigenschaften treffen auf innovative Anwendungen.

Kern-, Teilchen-, Astrophysik

Ziel der Forschung ist das Verständnis unserer Welt auf subatomarem Niveau, von den Atomkernen im Zentrum der Atome bis hin zu den elementarsten Bausteinen unserer Welt.

Biophysik

Biologische Systeme, vom Protein bis hin zu lebenden Zellen und deren Verbänden, gehorchen physikalischen Prinzipien. Unser Forschungsbereich Biophysik ist deutschlandweit einer der größten Zusammenschlüsse in diesem Bereich.