de | en

Prof. Dr. Jonathan Finley

Photo von Prof. Jonathan Finley.
+49 89 289-12770
Visitenkarte in TUMonline
Halbleiter-Nanostrukturen und -Quantensysteme
Professur für Halbleiter-Nanostrukturen und -Quantensysteme
Leading the Nanostructure Spectroscopy Group at Walter Schottky Institut of TUM: focus on understanding, manipulating and exploiting electronic, spin and photonic quantum phenomena in semiconductors and nanostructured electronic and photonic materials. Major research interests include: optical, electronic and spintronic properties of semiconductor quantum dots and wires fabricated from Aimonides, group-IV materials (Si, SiGe, C) and II-VI semiconductors and oxides (CdSe, ZnO). Another major arm of our research concerns quantum optical studies of dielectric and metallic nano-photonic materials and the application of such systems for applications in quantum information processing, metrology and sensing.
Freitag 9:00 bis 11:00

Lehrveranstaltungen und Termine

Titel und Modulzuordnung
Experimentalphysik 4 in englischer Sprache
Zuordnung zu Modulen:
VO 2 Finley, J. Di, 14:00–16:00, PH HS1
Materials Science
Zuordnung zu Modulen:
VO 2 Finley, J. Mi, 14:00–16:00, PH HS3
Fr, 10:00–12:00, PH HS3
Aktuelle Themen der Halbleiter-Quantenphotonik
Zuordnung zu Modulen:
HS 2 Finley, J.
Mitwirkende: Müller, K.
Mo, 10:00–12:00, WSI 101S
Aktuelle Themen der integrierten Quanten-Photonik
Zuordnung zu Modulen:
HS 2 Finley, J.
Mitwirkende: Kaniber, M.
Mo, 08:30–10:00, WSI 101S
Übung zu Materialwissenschaften
Zuordnung zu Modulen:
UE 1
Leitung/Koordination: Finley, J.
Termine in Gruppen
Fachdiskussion zum Münchner Physik-Kolloquium
Zuordnung zu Modulen:
SE 2 Finley, J. Krischer, K.
FOPRA-Versuch 01: Ballistischer Transport (Flippern mit Elektronen)
Zuordnung zu Modulen:
PR 1 Finley, J.
Mitwirkende: Becker, J.
FOPRA-Versuch 14: Optische Absorption
Zuordnung zu Modulen:
PR 1 Finley, J.
Mitwirkende: Müller, K.
FOPRA-Versuch 15: Quanteninformation in Stickstoff-Fehlstellen-Zentren in Diamant
Zuordnung zu Modulen:
PR 1 Finley, J.
Mitwirkende: Braunbeck, G.
FOPRA-Versuch 24: Feldeffekt-Transistor (MOSFET)
Zuordnung zu Modulen:
PR 1 Finley, J.
Mitwirkende: Kaniber, M.
FOPRA-Versuch 45: Optische Eigenschaften von Halbleiter-Quantenfilmen
Zuordnung zu Modulen:
PR 1 Finley, J.
Mitwirkende: Simmet, T.
Mentorenprogramm im Bachelorstudiengang Physik (Professor[inn]en A–J)
Zuordnung zu Modulen:
KO 0.2 Auwärter, W. Back, C. Bandarenka, A. Barth, J. Bausch, A. … (insgesamt 21)
Leitung/Koordination: Höffer von Loewenfeld, P.
Münchner Physik-Kolloquium
Zuordnung zu Modulen:
KO 2 Finley, J. Krischer, K. Mo, 17:15–19:15
Mo, 17:15–19:15, PH HS2
Repetitorium zu Aktuelle Themen der integrierten Quanten-Photonik
Zuordnung zu Modulen:
RE 2
Leitung/Koordination: Finley, J.
Diese Lehrveranstaltung ist keinem Modul zugeordnet.
SE 2 Finley, J. Holleitner, A. Sharp, I. Stutzmann, M. Di, 17:15–18:30, WSI 101S

Ausgeschriebene Angebote für Abschlussarbeiten

Characterization of Photonic Microstructures - Comparison of theory and experiment

The project

Infrared (IR) spectroscopy is used to identify many chemical substances. It is an established analytical method, but it faces one limitation: sensitivity. Measurements with low concentrations can therefore be difficult, which disqualifies IR for certain applications. The TUM start-up IRUBIS is tackling this issue and found that photonic microstructures on the surface of the sample carrier can lead to a signal enhancement. The aim of this thesis will be to analyze how the design of the structures influences this effect.


Your tasks.

  • Conducting measurements
  • Comparing data and simulation
  • Proposing new designs for the photonic structures


What we expect!

  • Motivation to work practically on an application-oriented thesis
  • A high degree of independence
  • Ability to work consistent and precise


What will you learn?

  • Simulation of photonic microstructures
  • Statistic evaluation of measurement results
  • Deep understanding of microstructure fabrication



Send your application directly to, Cc Please include a cv and a short motivational letter in one pdf file. Starting date: flexible

geeignet als
  • Bachelorarbeit Physik
Themensteller(in): Jonathan Finley
Probing single and multiple photons with modular superconducting nanowire detectors

Within the last years, superconducting single photon detectors (SSPDs) have proven to be one of the most versatile detectors for visible to infrared wavelengths. They outperform other single photon detectors in terms of detection efficiency (ca 90%), timing resolution (<10ps) and dark count rates (<1cps) and can be modified to detect the number of photons simultaneously hitting the detector (photon-number resolution, PNR) [1]. They can be integrated into on-chip photonic circuits, making them highly promising for future chip-based optical quantum applications.

In this project we aim at adding photon-number resolving capabilities to optical waveguide-integrated SSPDs to detect multi-photon states in optical cavities. We will use established techniques to sputter thin NbTiN and WSi superconducting films and pattern them using e-beam lithography to fabricate the superconducting detectors. These detectors will be tested and characterised at cryogenic temperatures in an optical microscopy setup to probe the fundamental detection mechanisms. We will implement a pixel-based photon number resolving technique and study the interaction of these pixels on the picosecond timescale using ultrafast lasers both in the visible as well as in the infrared regime. 


During the project, you will work in close collaboration with a team of Ph.D. students and postdocs, therefore, teamwork is crucial on this project. Some experience in the areas of optics, electronics, programming or cleanroom fabrication will be beneficial, but secondary to your personal motivation and commitment to this fascinating project. You will gain skills and knowledge and probably become an expert in various scientific research tasks, including but not limited to thin-film deposition techniques, nanoscale cleanroom fabrication and state-of-the-art electro-optical measurements at cryogenic temperatures.


[1] F. Natarajan et al. Supercond. Sci. Technol. 25 063001 (2012)

You should:

(1) Be highly motivated, (2) Be practically minded, (3) Enjoy working with state of the art optics and with control electronics / computer control and be capable of programming (e.g. Labview, C++ , Python) (4) Be willing to work as part of a small team in a dark lab in the summertime....  

You’ll get:

 (1) experience of performing sophisticated optical spectroscopy in state-of-the-art laboratories and (2) a sound understanding of the physics of superconducting thin films and quantum light detectors and, hopefully, (3) a nice paper in a journal.

geeignet als
  • Masterarbeit Physik der kondensierten Materie
  • Masterarbeit Applied and Engineering Physics
Themensteller(in): Jonathan Finley
Nach oben