de | en

Dr. rer. nat. Mathias Weiler

Photo von Dr. rer. nat. Mathias Weiler.
Telefon
+49 89 289-14226
Raum
E-Mail
mathias.weiler@mytum.de
Links
Visitenkarte in TUMonline
Arbeitsgruppen
Fakultät für Physik
Technische Physik
Sprechstunde
nach Vereinbarung

Lehrveranstaltungen und Termine

Titel und Modulzuordnung
ArtSWSDozent(en)Termine
Spin Electronics
Zuordnung zu Modulen:
VO 2 Weiler, M. Mi, 16:15–17:45, PH HS2
Advances in Solid State Physics
Zuordnung zu Modulen:
PS 2 Deppe, F. Gross, R. Hübl, H.
Mitwirkende: Althammer, M.Geprägs, S.Marx, A.Opel, M.Weiler, M.
Di, 10:15–11:45
Aktuelle Fragen der Magneto- und Spintronik
Zuordnung zu Modulen:
HS 2 Brandt, M. Hübl, H.
Mitwirkende: Althammer, M.Geprägs, S.Opel, M.Weiler, M.
Mi, 11:30–13:00, WSI 101S
Spin Caloritronics and Spin Pumping
Zuordnung zu Modulen:
PS 2 Hübl, H.
Mitwirkende: Althammer, M.Geprägs, S.Opel, M.Weiler, M.
Do, 14:00–15:30
Tutorial to Spin Electronics
Zuordnung zu Modulen:
UE 1 Weiler, M. Termine in Gruppen

Ausgeschriebene Angebote für Abschlussarbeiten

Engineering Magnetization Dynamics in a Magnetic Insulator

In magnetic resonance, a high frequency magnetic drive field is employed to excite the precessional motion of the magnetization of a magnet. Besides this fundamental excitation, where all spins are precessing in an orchestrated, collective motion, higher order magnetic resonance modes can be excited and investigated using broadband microwave spectroscopy techniques. Furthermore, as these properties rely on the „magnetic“ bandstructure of the material, they can also be tailored using nano-fabrication methods yielding engineered magnetic structures such as waveguides or resonators.

We are looking for a talented master student, who is eager to explore the different possibilities for tailoring the dynamic magnetic properties of yttrium iron garnet (YIG). The goal of your thesis is to design, fabricate and investigate tailored magnetic bandstructures in YIG, in particular also in freely suspended films. The thesis work involves simulation of the (magnetic) structures, advanced nano-patterning, as well as high frequency spectroscopy of the fabricated devices.

Contact: Hans.Huebl@wmi.badw.de, Mathias.Weiler@wmi.badw.deRudolf.Gross@wmi.badw.de

geeignet als
  • Masterarbeit Physik der kondensierten Materie
  • Masterarbeit Applied and Engineering Physics
Themensteller(in): Rudolf Gross
Magnetization dynamics in chiral magnets

Chiral magnetic materials show exotic magnetic properties such as a skyrmion lattice phase and have strong application potential for future spintronic devices. For these applications, a detailed understanding of the magnetization dynamics in these materials is required. At WMI, we routinely use broadband magnetic resonance spectroscopy to study magnetization dynamics as a function of magnetic field, temperature and frequency in a wide range of different materials. Now, magnetization dynamics in thin film and bulk chiral magnets shall be explored, with a focus on novel resonance phenomena.

We are looking for a highly motivated and talented master student who is interested in joining our magnetization dynamics project. During your thesis, you will use state-of-the-art microwave equipment such as vector network analyzers as well as magnet cryostats and will work on the forefront of a rapidly developing scientific field.

geeignet als
  • Masterarbeit Physik der kondensierten Materie
  • Masterarbeit Applied and Engineering Physics
Themensteller(in): Rudolf Gross
Magneto-acoustic torques

The magnetization dynamics of magnetic materials can be manipulated by acoustic waves through magnetoelastic coupling. Corresponding experiments using GHz-frequency surface acoustic waves are routinely performed at WMI and we have a broad range of spectroscopy tools - including optical and microwave techniques - at our disposal. Now, the interaction of acoustic waves and magnetization shall be studied in nanopatterned devices with application potential for spintronics.

We are looking for a talented and highly motivated master student who is interested in joining our magneto-acoustics project. During your thesis, you will use state-of-the-art nanolithography tools and thin film deposition techniques to fabricate hybrid acoustic/magnetic devices. You will characterize these devices using both optical and microwave spectroscopy methods. 

geeignet als
  • Masterarbeit Physik der kondensierten Materie
  • Masterarbeit Applied and Engineering Physics
Themensteller(in): Rudolf Gross
Nach oben