Diese Webseite wird nicht mehr aktualisiert.

Mit 1.10.2022 ist die Fakultät für Physik in der TUM School of Natural Sciences mit der Webseite https://www.nat.tum.de/ aufgegangen. Unter Umstellung der bisherigen Webauftritte finden Sie weitere Informationen.

de | en

Forscher beobachten das Phänomen „Lithium-Plating“

2014-09-03 – Nachrichten aus dem Physik-Department

Lithium-Ionen-Batterien gelten als Energiespeicher der Zukunft und sind vor allem für die Elektromobilität unverzichtbar. Ihr Vorteil: Sie haben die Fähigkeit, viel Energie zu speichern, sind aber vergleichsweise kompakt und leicht.

Lithiumionenzelle bei der Untersuchung am Instrument STRESS-SPEC
Lithiumionenzelle bei der Untersuchung am Instrument STRESS-SPEC. (Foto: A. Heddergott / TUM)

Wenn sich beim Laden der Batterie allerdings metallisches Lithium bildet und ablagert, kann sich die Lebensdauer des Akkus verringern – oder sogar ein Kurzschluss auftreten. Wissenschaftlerinnen und Wissenschaftlern der Technischen Universität München (TUM) ist es nun gelungen, mithilfe von Neutronenstrahlen einen Blick in die Batterie zu werfen, ohne sie zu zerstören, und den Mechanismus des sogenannten Lithium-Platings aufzuklären.

Mobiltelefone, Digitalkameras, Camcorder, Notebooks: Sie alle werden mithilfe von Lithium-Ionen-Akkus betrieben. Diese zeichnen sich durch ihre hohe Energiedichte aus, sind aber trotzdem nicht zu schwer oder zu groß für die tragbaren Geräte. „Ein Lithium-Ionen-Akku kann das Drei- bis Vierfache an Energie speichern im Vergleich zu einem gleich großen Nickel-Cadmium-Akku“, erklärt Dr. habil. Ralph Gilles, Wissenschaftler an der Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) der TUM. Auch Temperaturschwankungen und längere Lagerung stellen für die Lithium-Ionen-Batterien kein Problem dar.

Aufgrund dieser Vorteile gelten die Akkus als Schlüsseltechnologie für die Elektromobilität. In nicht allzu ferner Zukunft sollen die Elektrofahrzeuge mit Kraftstoff-betankten Transportmitteln mithalten können – auch was die Reichweite betrifft. Dazu sind leistungsfähige, sichere und schnell aufladbare Akkus notwendig.

Lithium-Plating kann Kurzschluss verursachen

Ein bereits bekanntes, aber bisher nicht im Detail untersuchtes Phänomen steht diesem Ziel im Weg: Die Ablagerung von metallischem Lithium, das sogenannte Lithium-Plating.

Der Hintergrund: Die Energiespeicherung bei einem Lithium-Ionen-Akku funktioniert vereinfacht gesagt nach folgendem Prinzip. Sowohl der Pluspol (die Kathode) als auch der Minuspol (die Anode) haben die Fähigkeit, Lithium-Ionen zu binden. Während des Ladens zwingt das elektrische Feld die Ionen, von der Kathode zur Anode zu wandern. Beim Entladen dagegen strömen die Lithium-Ionen wieder zurück zur Kathode, wobei Energie frei wird.

Die Kathode in den Lithium-Ionen-Akkus besteht aus einem Lithium-Metall-Oxid, das Standardmaterial für den Minuspol der Batterie ist Graphit (Kohlenstoff), das eine Schichtstruktur aufweist. In diese Schichten lagern sich die Lithium-Ionen während des Ladens ein.

Nun kann es vorkommen, dass die Lithium-Ionen –­ statt sich wie erwünscht in die Anode einzulagern – metallisches Lithium bilden. Dieses Lithium lagert sich an die Anode an und steht damit zum Teil nicht mehr für den zuvor beschriebenen Prozess zur Verfügung. Das bedeutet, die Leistungsfähigkeit der Batterie ist vermindert. In extremen Fällen kann es sogar zu einem Kurzschluss kommen. Metallisches Lithium ist außerdem schnell entflammbar.

Zerstörungsfreie Untersuchung mithilfe von Neutronenstrahlen

Bisher war es nicht möglich, den Mechanismus des Lithium-Platings genau zu beobachten. Wird die Batterie geöffnet, kann immer nur eine Momentaufnahme des Zustands beobachtet werden, erklärt Gilles. Allerdings ändert sich die Menge des metallischen Lithiums laufend. Mithilfe von Neutronenstrahlen konnten die Wissenschaftler Dr. Veronika Zinth von der Forschungs-Neutronenquelle FRM II und Christian von Lüders vom Lehrstuhl Elektrische Energiespeichertechnik die Prozesse in der Batterie live beobachten, ohne diese aufzuschneiden.

„Im Vergleich zu anderen Methoden kann man mittels Neutronendiffraktion genauere Aussagen treffen, wann wie stark das Lithium-Plating auftritt“, erklärt Veronika Zinth.

Am Materialforschungsdiffraktometer STRESS-SPEC am FRM II bestrahlten die Forscher die Batterie während des Ladens und Entladens mit Neutronenstrahlen. Der einfallende Neutronenstrahl wird an der Batterie nach dem Gesetz der Braggschen Gleichung gebeugt und schließlich in einem Detektor aufgenommen. Anhand dieser Signale ermitteln die Wissenschaftler indirekt, wie viel metallisches Lithium sich gebildet hat.

Schnellere Ladung bedeutet mehr metallisches Lithium

Erste Ergebnisse der Messungen:

  • Je schneller der Ladevorgang, desto mehr metallisches Lithium wird gebildet. Bis zu 19 Prozent der normalerweise im Lade- und Entladeprozess beteiligten Lithium-Ionen liegen dabei als metallisches Lithium vor. (Die Messung wurde bei -20 Grad Celsius durchgeführt.)
  • In einer Pause von 20 Stunden nach einem schnellen Ladevorgang reagiert ein Teil des metallischen Lithiums wieder mit dem Graphit, Lithium-Ionen lagern sich in die Graphit-Schicht ein. Es handelt sich sozusagen um einen nachträglichen, langsamen Ladeprozess. Allerdings ist nur ein Teil des Lithium-Platings reversibel.
  • Tiefe Temperaturen begünstigen die Bildung von metallischem Lithium.

Die Wissenschaftler planen weitere Experimente, die den Mechanismus des Lithium-Platings noch detaillierter aufklären sollen. Diese Ergebnisse könnten dabei helfen, herauszufinden, wie das Phänomen sich so gut wie möglich vermeiden lässt. Hierzu gehört auch die Beantwortung der Frage, wie schnell geladen werden kann, bevor Lithium-Plating einsetzt.

Die Studie ist Teil des BMBF-Projektes ExZellTUM (Exellenzzentrum für Batteriezellen). Das Projekt ExZellTUM betrachtet die Entwicklung neuer Energiespeichersysteme sowie neuer Fertigungsprozesse, Formierungsstrategien und Testtechnologien für deren Produktion. In dem Projekt sind die vier Partner der Lehrstuhl für Elektrische Energiespeichertechnik, das Institut für Werkzeugmaschinen und Betriebswissenschaften, der Lehrstuhl für Technische Elektrochemie und die Forschungs-Neutronenquelle Heinz Maier-Leibnitz beteiligt.

Veröffentlichung

Lithium plating in lithium-ion batteries at sub-ambient temperatures investigated by in situ neutron diffraction
Veronika Zinth, Christian von Lüders, Michael Hofmann, Johannes Hattendorff, Irmgard Buchberger, Simon Erhard, Joana Rebelo-Kornmeier, Andreas Jossen, Ralph Gilles
Journal of Power Sources, 271, 152–159 (20 December 2014)

Kontakt

Dr. habil. Ralph Gilles
Technische Universität München
Tel: +49 89-289-14665
Nach oben