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1 Safety Instructions

Please read the enclosed safety instructions carefully. Working on the experiment is not permit-
ted until all participants confirm with their signatures that they have carefully read and fully
understood the safety instructions.

2 Introduction

Quantum Computing might solve some computational problems, that could break current cryptog-
raphy standards in the blink of an eye. Quantum Sensing applications might provide chemically
resolved, three dimensional images of single molecules. Both fields depend on the possibility to
read quantum information stored in quantum bits (qubits). Man systems, however, require ultra
high vacuum, complex laser setups or cryogenic temperatures.

Fortunately, the recently rediscovered nitrogen-vacancy center in diamond allows readout in air
atmosphere at room temperature enabled by a setup that is small enough to be easily carried by
a single person. This lab course will take advantage of this and let the students perform qubit
initialization, simple readout as well as pulsed measurement protocols to read out more advanced
information than pure qubit state.

3 Theoretical Background

This section provides the theoretical background to conduct and understand the measurements
of this advanced lab course. First, the concept of electron paramagnetic resonance (EPR) is ex-
plained, which lays the foundation to understand all following measurements. Then, the rotating
frame is introduced to gain a more intuitive understanding of the following most common pulsed
measurement protocols in the field of EPR. Finally, the nitrogen-vacancy center in diamond is
presented, which will be our atomic-scale EPR system throughout this lab course.

3.1 Electron Paramagnetic Resonance

Electron paramagnetic resonance is the switching of an electron spin state, once it is ”tuned into
resonance” with an external excitation field. The details can be derived from the following spin
Hamiltonian of an electron in an external magnetic field B0 = B0 · ẑ:

Ĥ = geµBŜzB0 (1)

Here, ge is the Landé g-factor of the electron, µB is the Bohr magneton and Ŝz is the z
component of the electronic spin operator with spin quantum number S = 1

2 . This equation
describes the linear energy increase / decrease with respect to the external field, depending on the
electron’s spin eigenvalue mS = ± 1

2 . Such a B-field induced energy splitting is usually referred to
as Zeeman splitting (Figure 1).

If the photon energy ~ωph of a driving field

B1 = B1(x̂ · sin(ωpht+ ŷ · cos(ωpht))) (2)

matches the energy splitting at a field B0, the photons can be absorbed or cause a stimulated decay
to switch the spin state. This is the so called resonance condition of EPR:

~ωph = geµBB0 (3)

3.2 Rotating Reference Frame

While the basic effect of EPR can be understood in this simple picture, the effect of pulse length,
pulse power and detuning of the driving field B1 requires a more sophisticated picture: the rotating
reference frame. A detailed derivation of the rotating reference frame can be found in the book
Handbook of MRI pulse sequences by M. A. Bernstein, K.F. King and X. J. Zhou in Chapter 1.2.
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Figure 1: Zeeman splitting of a free electron spin in an external field B0. The energy splitting
of the two possible states mS = ± 1

2 (blue and red line) is proportional to B0. If the energy of
a driving field (dashed gray lines) matches the splitting (rich green arrow), it induces transitions
between the two states. In case of too high or too low energy (pale green arrows), transitions can
not be driven.

3.2.1 Basics

The main idea is to simplify the representation of both the spin state and the excitation radiation.
Similar to a classical magnetic moment, the spin is precessing with the Larmor frequency ωL,
defined by

~ωL = geµBB0 (4)

around B0, i.e. the z-axis. The magnetic component of a circularly polarized excitation beam
propagating along the z-axis is also precessing around the z-axis, but with frequency ωph (Equation
2). By combining equations 3 and 4, that resonance can be rewritten as

ωL = ωph (5)

which further means, that in the case of resonance the excitation field and the spin precess at the
same absolute frequency or with no relative frequency at all.

Thus, switching into a rotating reference frame precessing as well with frequency ωph around
the z-axis, the excitation field becomes a constant vector in any case. The spin then precesses with
the detuning frequency

∆ω = ωph − ωL (6)

which usually is much lower than ωL and in resonance it equals 0, rendering the spin static as well.

3.2.2 Visualization

In a rotating frame, the exact orientation of the constant vector B1,rot depends on its phase ϕ and
detuning ∆ω:

B1,rot = cos(ϕ)B1 · x̂+ sin(ϕ)B1 · ŷ +
∆ω

γ
· ẑ (7)

Here, γ = geµB/~ is the gyromagnetic ratio. The phase ϕ defines the polar angle, while the
detuning ∆ω defines the azimuthal angle.

A spin state

|ψ〉 = cos

(
θ

2

)
|↑〉+ sin

(
θ

2

)
eiφ |↓〉 , (8)

where |↑〉 and |↓〉 are eigenstates, can simultaneously be visualized in the same reference frame.
Formally, the coordinates x, y, z are calculated by
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xy
z

 =

〈ψ|σx |ψ〉〈ψ|σy |ψ〉
〈ψ|σz |ψ〉

 , (9)

with σi being the corresponding Pauli matrix.
Luckily, it can be shown, that the results follow simple rules: The z-component of the reference

frame describes the excitation of the state. This results in θ being represented as the azimuthal
angle:

|ψ〉 θ z

|↑〉 0 1

|↓〉+|↑〉√
2

π
2 0

|↓〉 π −1

The quantum mechanical phase φ can further be expressed as the polar angle of the frame and is
generated by a detuning between the quantum system and the excitation field, just as described
for a classical picture by equation 6.

In summary, the spin state |ψ〉 introduced in equation 8 is represented by the so called Bloch
vector

~ψ =

sin(θ) cos(φ)
sin(θ) sin(φ)

cos(θ)

 . (10)

A comparison with common spherical coordinates already implies, that this state is always located
on a sphere surface with radius r = 1, called the Bloch sphere.

3.2.3 Time Evolution

In general, the time evolution in the rotating frame of Bloch vector ~ψ, induced by a driving field
B1,rot, is described by

d~ψ

dt
= γ · ~ψ×B1,rot, (11)

which becomes even more transparent for a specific case, that will be most prominent throughout
this lab course: exciting |ψ〉 from the ground state applying a resonant B1,rot with phase ϕ = 0,
rendering B1,rot a constant vector along the x-axis. For the first infinitely short time step, we get(

d~ψ

dt

)
t=0

= γ

0
0
1

×

B1

0
0

 =

 0
γB1

0

 , (12)

which for the following time steps results in a uniform rotation of our Bloch vector in the y-z-plane
around the x-axis (Figure 2). The rotation speed is given by the field amplitude B1. A pulse
whose length has been adjusted to rotate the state vector by an angle of π/2 is called a π/2-pulse,
accordingly for a π-pulse.

3.3 Pulse Sequences

With our knowledge from the previous section, we can now briefly discuss the effect of the basic
pulse sequences used in EPR experiments. We will assume, that the state has been prepared in the
ground state |↑〉 at the beginning of the sequence. Further, B1 is assumed to be in resonance and
the phase ϕ is chosen to be 0. As a result, the state vector’s evolution is described by equation 12
during a pulse.
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Figure 2: Time evolution of a resonantly driven spin visualized in the rotating frame. At t0 = 0
the spin is in its ground state. According to equation 12, the state vector starts rotating along the
y-z-plane towards the y-axis until it reaches the y-axis at t = t2. However, the state vector will
continue precessing in the same manner around B1 as long as the driving field is applied.

3.3.1 Rabi Sequence

As described by equation 12, the spin state vector |ψ〉 is constantly rotating around the x-axis with
a rotation frequency purely defined by the excitation strength B1. The resulting rotation angle is
exclusively defined by the pulse length.

We can use this to probe the unknown but constant excitation strength B1 by applying a Rabi
sequence, named after the US American physicist Isidor Isaac Rabi, as shown in Figure 3 top. The
spin is first initialized into its ground state, then rotated by a pulse of length Tp and finally its
z-component is read out. During every subsequent iteration of the sequence, the pulse length is
increased by ∆Tp, resulting in an increased rotation angle. This correlates the pulse length with
the excitation level of the spin state. As the state vector keeps rotating along the spherical surface
after arriving at the excited state, down to the ground state and then up again, the resulting graph
of this measurement is a sine curve (Figure 3 bottom). The oscillation frequency depends on the
resulting rotation angle after a given pulse length Tp and therefore on the excitation strength B1.

A pulse is usually named after its rotation angle, as for example a spin flipping pulse is called
a π-pulse with corresponding length Tπ (Figure 3 bottom). The oscillation frequency, also called
Rabi frequency Ω, is then defined as:

Ω =
2π

T2π
. (13)

3.3.2 Ramsey Sequence

In resonance, a spin is rotating with the same frequency as the rotating frame itself and thus frozen
within the reference frame in absence of any pulse. A resonant π-pulse as determined by a Rabi
sequence measurement would therefore invert the spin excitation even if it is sliced up into an
arbitrary number of sub-pulses, as long as the sum over all sub-pulse lengths is Tπ. In the case
∆ω 6= 0 however, as described in section 3.2.1, the spin state vector precesses around the z-axis
with ∆ω. For the rest of this section, we assume ∆ω � Ω.

We can use this behavior to measure the detuning ∆ω between our excitation field and our spin
level splitting with a so called Ramsey sequence (Figure 4 top): The spin is first initialized into its
ground state, then rotated by a π/2-pulse onto the y-axis. During a pulse-free evolution time τ ,
the spin precesses in the x-y-plane by an angle

φ = τ ·∆ω. (14)

A last π/2-pulse is applied before the z-component is read out. During every subsequent iteration
of the sequence, the waiting time τ is increased.

Starting at τ = 0, we basically apply a π-pulse and therefore get z = −1. Increasing τ allows
the spin to evolve after the first π/2-pulse so that the second π/2-rotation around the x-axis does
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Figure 3: Rabi experiment. Top: Rabi sequence. It consists of initialization, an iteratively in-
creasing driving field pulse and readout. Bottom: Measurement graph. The spin’s rotation angle
is linearly increased with pulse length, leading to a sinusoidal oscillation of its z-component. The
abscissa ticks correspond to the blue graph recorded with field B1. The oscillation frequency scales
with the driving field, as indicated by the dashed red graph.

Figure 4: Ramsey experiment. Top: Ramsey sequence. It consists of initialization, two π/2-pulses
with a free evolution time τ in-between and finally readout. Bottom: Measurement graph. During
τ , the spin state is precessing with the detuning frequency ∆ω and then projected onto the z-axis.
As a result, the spin z-component is oscillating with the detuning frequency. The abscissa ticks
correspond to the blue graph.
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not fully excite the spin anymore. When τ is long enough for the spin to precess by an angle of
φ = π/2, the second π/2-pulse has no effect and we get a symmetrical superposition, i.e. z = 0.
Further increasing τ decreases the excited state component until we get z = 1 for φ = π. Increasing
τ even beyond this level leads to an increase of the excited component again up until the spin is
fully excited after a sequence for φ = 2π.

The resulting measurement graph is an oscillation of the z-component again (Figure 4 bottom).
In contrast to the previous section, the oscillation period is a measure for the detuning ∆ω, as
described by equation 14. The oscillation period τ2π directly translates into the detuning via

∆ω =
2π

τ2π
. (15)

3.3.3 Hahn Echo Sequence

As we will work with an inhomogeneous external magnetic field B0(x, y, z) and a spatially dis-
tributed ensemble of spins, the resonance condition (equation 3) does also vary spatially. The
resulting inhomogeneous detuning effects can however be compensated by a refocusing sequence
such as the Hahn Echo sequence (Figure 5 top).

The spins are first initialized into their ground state, then rotated by a π/2-pulse onto the y-axis.
Each spin of the ensemble starts precessing around the z-axis according to its local detuning

∆ω(x, y, z) = ωph − geµBB0(x, y, z) (16)

during a first pulse-free waiting time τ1, resulting in a distribution of phase angles φ (equation
14). A following π-pulse effectively inverts the y-component of each spin. During the following
pulse-free waiting time τ2, the inverted spins refocus due to the same individual local detuning
∆ω(x, y, z) until they all overlap again at τ1 = τ2. A last π/2-pulse rotates the spins back onto
the z-axis for readout. In the case of a constant vector field B0(x, y, z), the sequence with τ1 = τ2
rotates all spin vectors by 2π and they collectively end up in the ground state at z = 1 (Figure 5,
upper graph).

This sequence is typically used to measure the spin-spin relaxation time T2. If we fix τ1 = τ2 = τ ,
we will find a decrease of the z-component of the states with increasing τ (Figure 5, lower graph).
The main contributors to this decoherence effect are neighboring spins emitting nanoscale magnetic
fields, whose quickly fluctuating influence can not be refocused by the sequence. The timescale of
this exponential decrease is the so called spin-spin relaxation time T2.

3.4 The Nitrogen-Vacancy Center

All the effects described above will be measured on the same physical system during this course:
the nitrogen-vacancy (NV) center in diamond. It is a lattice defect, replacing two nearest-neighbor
carbon atoms by a substitutional nitrogen atom and a vacancy. It is aligned along one of the
¡111¿-axis of the diamond. The NV electrons form an effective Spin 1 system. The corresponding
energy level scheme consists of a ground state triplet |g〉, an excited state triplet |e〉 and a long
lived shelving state |s〉 (Figure 6).

The mS = 0 state of each triplet is already split from the mS = ±1 states in the absence
of any external magnetic field by the zero field splitting D|g〉 = 2.87 GHz and D|e〉 = 1.42 GHz,
respectively. The degeneracy of the mS = ±1 states is lifted by applying a magnetic field B0

(Figure 6, green box). A state transition between the ground state’s triplet’s mS = 0 state and one
of its mS = ±1 states is driven by resonant microwave radiation with frequency

ωmw = D|g〉 ± γnvB0, (17)

where γnv = 2.8 MHz/G is the gyromagnetic ratio of the NV center. A spin conserving transition
from |g〉 to |e〉 can be driven by light with a maximum wavelength of 638 nm. The excited mS = 0
state almost exclusively radiatively decays back into its ground state pendant, providing one photon
in the red spectrum. While the excited mS = ±1 states share this decay channel, they also have a
significant non-radiative decay channel via the shelving state, in which the spin remains for 300 ns
before further non-radiatively decaying in the ground state, preferably the mS = 0 state.
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Figure 5: Hahn experiment. Top: Hahn echo sequence. The spheres below depict the spin states
for given points of the sequence as blue arrows. After initialization, a π/2-pulse is applied and the
spins are evolving during a first free evolution time τ1 along the x-y-plane according to their local
magnetic field B0(x, y, z). After a π-pulse they are evolving again during a second free evolution
time τ2, in general reverting the first evolution. After a second π/2-pulse, the collective spin state
is read out. Upper graph: Echo revival measurement. The spin ensemble is best refocused if both
evolution times are equal. This can experimentally be shown by fixing the value of τ1 and sweeping
τ2 around this value. Lower graph: Echo decay measurement. The spin-spin relaxation time T2
can be measured by fixing τ1 = τ2 and sweeping the evolution duration.
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Figure 6: Level scheme of a NV center. Main plot: General level scheme. The band gap contains
a ground state triplet |g〉, an excited state triplet |e〉 and a long-lived shelving state |s〉. Spin-
conserving transitions between |g〉 and |e〉 can be optically driven. The mS = ±1 states of |e〉 can
additionally decay non-radiatively via |s〉 to the mS = 0 state of |g〉. Green box: Zoom into the
|g〉 state. At no external magnetic field, the mS = 0 state is split by D|g〉 from the degenerate
mS = ±1 states. The degeneracy is lifted by a field B0 > 0.

These dynamics have two major applications: spin initialization and state readout. Spin ini-
tialization is achieved by continuously driving the optical transition. While the mS = 0 is cycling
unaltered between |g〉 and |e〉, the mS = ±1 states will eventually decay into the shelving state and
end up in the mS = 0 state. Regardless of the original state, we can hence effectively initialize our
spin into the mS = 0 state.

Spin readout is achieved by collecting the photons emitted from the NV center during optical
driving. As explained above, one |g〉 → |e〉 → |g〉 cycle provides one red photon emitted from the
NV center. Thus, a spin in the mS = 0 state provides one photon per cycle. A spin in a mS = ±1
state will sometimes decay non-radiatively and therefore on average provide less than one photon
per cycle. In summary, the NV center is brighter when it is in the mS = 0 state than when it is in
on of the mS = ±1 states.

4 Experimental Setup

This section explains the fundamental functionality of the experimental setup of this lab course
(Figure 7). The heart of the setup is a diamond sample with a considerable bulk NV center
concentration. The optical transition of the NV centers is driven by a green laser (λ = 520 nm)
focused on the diamond. The red photoluminescence emitted by the NV centers, carrying the spin
state information, is recorded by a camera. A 650 nm long pass filter (not depicted) blocks the
green excitation light. The microwave to manipulate the spin state inbetween a triplet comes from
a continuous wave (cw) microwave generator and is chopped into pulses by a switch before it is
applied to the NV centers via a ring antenna.

The whole setup is managed by a computer. It switches the laser on and off in cw mode or
specifies the laser pulse sequence in pulsed mode. The computer also tunes the microwave source to
the desired frequency and dictates the microwave pulse sequence generated by the switch. At last,
the camera sends each recorded image to the computer where it is further processed and plotted
as a graph as discussed in the theory section.
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Figure 7: Experimental Setup. The NV centers in the diamond are optically excited by a laser,
their spin is manipulated by a microwave pulses applied via an antenna and finally readout by a
camera. The whole setup is managed by a computer.

5 Experimental Protocol

This section defines the experimental protocol for the laboratory time of this lab course. The
first part treats the preparations to be met to ensure the technical apparatus is in good condition
to perform the following measurements. The second part names the properties that need to be
measured, however without going into detail. The actual procedure is to developed by the students
in a discussion with the tutor during the lab course. Therefore it is vital to have read and understood
sections 3 and 4.

5.1 Preparation

At first start the software by executing the corresponding ’main.py’ file. Click on the ’Autoconnect’
button, to connect the laser, the camera, the microwave source and the microwave switch.

5.1.1 Laser

Switch the laser on by clicking on the ’FPGA’ button in the main window and then click on the
’On’ button of the sub-window. Check if the laser spot is focused on the diamond and is surrounded
by the ring antenna. If not, you can either move the diamond or the laser diode to correct their
relative position. After moving, make sure, the antenna is pressed against the diamond.

5.1.2 Camera

Click on the ’Image’ button of the main window. A sub-window with three panels appears. The
left panel shows the live stream of the camera image, the middle panel shows the currently recorded
background image and the right panel is the difference between the first two.

First, position the camera in such a way, that you see a sharp image of the laser spot. Use
the sliders around the first panel to define your region of interest, which should be as narrow as
possible around the laser spot. Now switch off the laser and record a background image.

If the image should show an intensity level of 64.000 counts, the camera is saturated in that
spot. In this case you have to lower the exposure time in the camera settings.

5.1.3 Microwave

The microwave generation is performed by a voltage controlled oscillator (VCO). The output fre-
quency is defined by a voltage applied at the VCO input. As a consequence, the software needs a
voltage-frequency calibration. Click on the ’Microwave’ button of the main window. The popped
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up sub-window allows to load a recent calibration. If, during the measurement, the VCO calibration
appears to be flawed, this window can also be used to recalibrate.

5.2 Measurement Tasks

1) Measure the zero field splitting D|g〉.

2) Measure the effect of Zeeman splitting. Try to resolve the maximum number of resonance
lines.

3) Determine the duration of a π-pulse.

4) Measure the detuning of your microwave frequency to one of the resonance lines.

5) Record an echo revival.

6 Additional Questions

Discuss the following questions in the protocol about this advanced lab course:

• Why is it impossible to measure the zero field splitting of the excited triplet state D|e〉 with
our setup?

• Discuss possible reasons, why the recorded Rabi oscillation does not continue endlessly?

• Can you imagine, how a Hahn echo can be used to detect a certain frequency instead of
decoupling the system from it? (Hint: ’No’ is not the correct answer.)
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