Blatt 1

Induktion, Supremum, Infimum, komplexe Zahlen

Jonas Habel, Florian Kollmannsberger

16. März 2018

1 Komplexe Zahlen

Geben sie die Zahlen als a + ib mit $a, b \in \mathbb{R}$ und in Polardarstellung an.

- 1. 1 + i
- 2. $\frac{1}{i}$
- 3. $(1+i)^2$
- 4. \sqrt{i}
- 5. $\sqrt{-5+12i}$
- 6. $(1 + \frac{1}{i})^{-1}$
- 7. $(1+i)e^{i\frac{\pi}{4}}$

Hinweis: Es hilft manchmal der Ansatz $\sqrt{x+iy}=u+iv$ Berechnen sie

1. $\ln(i)$, $\ln(1+i)$, i^i

1.1 Einheitswurzel

Gegeben ist das Polynom $p(z) = z^7 - 1$

- (a) Zeigen Sie die geometrische Summenformel $\sum_{i=0}^{m} z^i = \frac{z^{m+1}-1}{z-1}$ für $z \neq 1, n \in \mathbb{N}$
- (b) Spalten sie den Faktor (z-1) ab.
- (c) Finden sie die restlichen Nullstellen von p.

2 Injektiv, Surjektiv, Bijektiv

Entscheide durch Beweis oder Gegenbeispiel, ob die folgenden Funktionen injektiv surjektiv oder bijektiv sind.

- (a) $f: \mathbb{N} \to \mathbb{N}, n \mapsto n+1$
- (b) $f: \mathbb{Z} \mapsto \mathbb{Z}, n \mapsto n+1$
- (c) $f: \mathbb{N} \times \mathbb{N} \mapsto \mathbb{N}, (n, m) \mapsto n + m$
- (d) $f: \mathbb{N}_0 \times \mathbb{N}_0 \mapsto \mathbb{N}_0, (n, m) \mapsto n + m$

2.1 Bildmengen

Entscheiden Sie welche der folgenden Aussagen für die Mengen M,N und alle Abbildungen $f: M \mapsto N$ gelten. Geben sie jeweils einen Beweis oder ein Gegenbeispiel an.

- (a) Für alle $X, Y \subset N$ gilt $f^{-1}(X \cup Y) = f^{-1}(X) \cup f^{-1}(Y)$
- (b) Für alle $A \subset M$ gilt $f^{-1}(f(A)) = A$
- (c) Wenn f
 surjektiv ist, so gilt $f^{-1}(f(A)) = A$ für alle $A \cup M$

3 Vollständige Induktion

Beweisen Sie mittels vollständiger Induktion

- (a) $4^n + 5$ ist für alle $n \in \mathbb{N}_0$ durch 3 teilbar.
- (b) $4^n + 15n 1$ ist für alle $n \in \mathbb{N}_0$ durch 9 teilbar. Hinweis nutzen sie (a).

(c) für
$$n \ge 2$$
 gilt $\prod_{k=2}^{n} (1 - \frac{1}{k}) = \frac{1}{n}$

(d) für
$$n \ge 2$$
 gilt $\prod_{k=2}^{n} (1 - \frac{k-1}{k}) = \frac{1}{n!}$

(e)
$$\forall n \in \mathbb{N} : (1+h)^n \ge 1 + nh$$
 falls $h \ge -1$

(f)
$$\forall n \in \mathbb{N} \quad \sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4}$$

3.1 Fibonacci Zahlen

Die Fibonacci-Zahlen $(a_n)_{n\in\mathbb{N}}$ sind rekursiv definiert durch

$$a_1 := 1, a_2 := 1, a_{n+1} := a_n + a_{n-1} \text{ für } (n \ge 2)$$

zeigen sie die folgenden Ausssagen

(a)
$$a_{n-1}a_{n+1} - a_n^2 = (-1)^n \forall n \ge 2$$

(b)
$$(\frac{3}{2})^{n-2} \le a_n \le (\frac{5}{3})^{n-1} \forall n \ge 2$$

(c) Die Quotientenfolge $(q_n)_{n\in\mathbb{N}}$ mit $q_n:=\frac{a_{n+1}}{a_n}$ folgt der Formel

$$q_1 = 1, q_{n+1} = 1 + \frac{1}{q_n} (n \ge 2)$$

4 Supremum, Maximum, Infimum, Minimum

4.1 Supremum einer Menge

Finden Sie das Supremum der Menge $M = \{x \in \mathbb{R} | x = 1 - \frac{1}{n}, n \in \mathbb{N}\}$ Ist das Supremum auch ein Maximum?

4.2 Supremum einer Menge und Induktion

Zeigen sie das das Supremum der Menge $D=\{\frac{n^2}{2^n}|n\in\mathbb{N}\},\frac{9}{8}$ ist. Hinweis: Zeigen Sie das gilt $n^2\leq 2^n\forall n\geq 4$ per Induktion

4.3 Supremum eine Funktion

Sei $f: (-1,1) \mapsto \mathbb{R}, x \mapsto \frac{x}{1-|x|}$ Entscheiden Sie ob f injektiv oder surjektiv oder bijektiv? Gibt es eine inverse Funktion f^{-1} , falls ja geben Sie diese an. Zeichnen sie beide.