Ferienkurs Analysis 2 für Physiker	Name:	
Sommersemester 2017		
Probeklausur	Matrikelnummer:	
22.09.17		
Prüfungsdauer: 90 Minuten		

Die Klausur enthält $\bf 4$ Seiten (einschließlich dieses Deckblattes) sowie $\bf 9$ Fragen. Sie können insgesamt $\bf 83$ Punkte erreichen.

Einzig erlaubtes Hilfsmittel ist ein, wenn notwendig beidseitig, handbeschriebenes DIN-A4 Blatt. Insbesondere dürfen keine Fachbücher & Skripte sowie elektronischen Hilfsmittel jeder Art (z.B. Handy, Taschenrechner, Laptop,...) verwendet werden.

Bewertungstabelle

Aufgabe:	1	2	3	4	5	6	7	8	9	
Punkte:	8	15	5	6	10	11	5	18	5	83
Ergebnis:										

Note:	

Viel Erfolg!

1. 8 Punkte Betrachten Sie die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$,

$$f(x,y) = \begin{cases} \frac{x^2y}{x^2+y^2} & \text{falls } (x,y) \neq (0,0), \\ 0 & \text{sonst.} \end{cases}$$

- (a) Zeigen Sie, dass f stetig ist.
- (b) Zeigen Sie, dass die partiellen Ableitungen von f im Nullpunkt existieren und bestimmen Sie diese.
- (c) Berechnen Sie die Richtungsableitung von f in Richtung $v = \frac{1}{\sqrt{2}}(1,1)$.
- 2. 15 Punkte Betrachten Sie die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$

$$f(x,y) = x^2 + \sin^2 y.$$

- (a) Bestimmen Sie die Richtungsableitung von f im Ursprung in Richtung $v \in \mathbb{R}^2$, |v|=1.
- (b) Bestimmen Sie alle kritischen Punkte von f und klassifizieren Sie diese.
- (c) Bestimmen Sie nun die globalen Extrema auf $K = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 4\}$. Hinweis: Die Gleichung $\sin(x)\cos(x) = x$ hat in \mathbb{R} nur die Lösung x = 0.
- 3. 5 Punkte Gibt es eine differenzierbare Funktion $f: \mathbb{R}^2 \to \mathbb{R}$, welche

$$\nabla f(x,y) = \begin{pmatrix} y \arctan x \\ x \arctan y \end{pmatrix}$$

für alle $(x,y) \in \mathbb{R}^2$ erfüllt? Begründen Sie Ihre Antwort.

- 4. 6 Punkte Bestimmen Sie das Taylorpolynom 5. Ordnung von $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = \cos^2(x)\sin(y)$ im Entwicklungspunkt (0,0).
- 5. (a) 6 Punkte Es seien das Vektorfeld $v: \mathbb{R}^3 \to \mathbb{R}^3$ und die Kurve $\gamma: [0, \pi/2] \to \mathbb{R}^3$ definiert durch

$$v(x,y,z) = \begin{pmatrix} 3x^2 + 6y \\ 6x + z^2 \\ 2yz \end{pmatrix}, \qquad \gamma(t) = \begin{pmatrix} 2\sin^{2017}(t) + \tan^2(2t)e^{\arctan t} \\ \frac{\sin t}{1 + \tan^2(2t)} \\ \sin^{2017}(t) \end{pmatrix}.$$

Berechnen Sie $\int_{\gamma} v(s) \cdot ds$.

(b) $\boxed{4 \; Punkte}$ Seien $I, J \subset \mathbb{R}$ mehrpunktige Intervalle und $\varphi: I \to J$ eine \mathcal{C}^{1} –Parametertransformation. Ferner seien $\gamma: J \to \mathbb{R}^n$ eine \mathcal{C}^{1} –Kurve und $F: \mathbb{R}^n \to \mathbb{R}^n$ ein stetiges Vektorfeld. Zeigen Sie, dass für $\xi(t) := (\gamma \circ \varphi)(t)$

$$\int_{\xi} F(y) \cdot dy = \operatorname{sgn} \varphi' \int_{\gamma} F(y) \cdot dy$$

gilt.

- 6. 11 Punkte Sei $U \subset \mathbb{R}^n$ offen und $f \in \mathcal{C}^1(U, \mathbb{R})$.
 - (a) Bestimmen Sie einen Atlas der \mathcal{C}^1 -Untermannigfaltigkeit des \mathbb{R}^{n+1}

$$M = \{x \in U \times \mathbb{R} \mid f(x_1, \dots, x_n) = x_{n+1}\}.$$

Weisen Sie die Karteneigenschaften der Konstituenten des Atlas nach. Welche Dimension hat die Untermannigfaltigkeit?

- (b) Bestimmen Sie eine Basis des Normalenraums N_pM am Punkt $p\in M.$
- 7. $5 \ Punkte$ Gegeben sei die Funktion $f: \mathbb{R}^5 \to \mathbb{R}^2$,

$$f(v, w, x_1, x_2, x_3) = \begin{pmatrix} x_1 x_2^2 + x_1 x_3 v + x_2 w^2 - 3 \\ v^3 x_2 x_3 + 2x_1 w - w^2 v^2 - 2 \end{pmatrix},$$

welche f(1,1,1,1,1)=0 erfüllt. Zeigen Sie, dass f in einer Umgebung $U\times V, U\subset \mathbb{R}^2$ und $V\subset \mathbb{R}^3$ offen und nicht-leer, des Punktes $p=(1,1,1,1,1)\in \mathbb{R}^5$ nach v,w gleichzeitig aufgelöst werden kann und bestimmen Sie für die Auflösung $g:V\to \mathbb{R}^2$ die Jacobi Matrix Dg(1,1,1).

8. (a) 7 Punkte Lösen sie die folgenden Anfangswertprobleme:

i.
$$\dot{x} = \frac{x^2 + x - 6}{\cos(t)}$$
, $x(0) = 2$

ii.
$$\dot{x} = \frac{t}{1+x+t^2+xt^2}$$
, $x(0) = 2$

(b) 11 Punkte Für
$$t \in \mathbb{R}$$
 sei $A(t) = \begin{pmatrix} t & 0 & 0 \\ 0 & 3 & 2 \\ 0 & 0 & 3 \end{pmatrix}$ vorgelegt.

i. Berechnen Sie eine Basis $\{\phi(t), \psi(t), \rho(t)\}$ des Lösungsraums der linearen Differentialgleichung

$$\dot{x}(t) = A(t)x(t)$$

welche

$$\phi(0) = \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix}, \quad \psi(0) = \begin{pmatrix} 0 \\ 0 \\ 3 \end{pmatrix}, \quad \rho(0) = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

erfüllt.

ii. Lösen Sie das Anfangswertproblem

$$\begin{pmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \\ \dot{x}_3(t) \end{pmatrix} = A(t) \begin{pmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{pmatrix} + \begin{pmatrix} t \\ 5 \\ 3 \end{pmatrix}, \quad \begin{pmatrix} x_1(0) \\ x_2(0) \\ x_3(0) \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$$

9. 5 Punkte (Betrachten Sie diese Aufgabe als zusätzliche Übungsaufgabe. Es war nicht unsere Absicht, diese in die Probklausur zu integrieren; hingegen sollten Sie sich (die neue) Aufgabe 5 umso mehr zu Herzen nehmen, da eine Aufgabe dessen Typs als Klausuraufgabe sehr wahrscheinlich ist.)

Sei $f \in \mathcal{C}^1(\mathbb{R}^3, \mathbb{R})$ und $v \in \mathcal{C}^1(\mathbb{R}^3, \mathbb{R}^3)$. Zeigen Sie die Identität

$$\nabla \times (fv) = \nabla f \times v + f \nabla \times v.$$