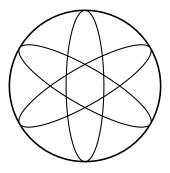


Ferienkurs Analysis 3 für Physiker



Übung: Fourier-Transformation und Faltung

Autor: Maximilian Jokel, Benjamin Rüth

Stand: 10. März 2016

Aufgabe 1 (Eigenschaften der Fourier-Transformation) Beweisen Sie die folgenden in der Vorlesung besprochenen Eigenschaften der Fourier-Transformation für Funktionen $f, g \in \mathcal{S}(\mathbb{R}^n)$

1.1 Homogenität

$$\widehat{\alpha f} = \alpha \widehat{f}$$
 für $\alpha \in \mathbb{C}$

1.2 Linearität

$$\widehat{f+g} = \widehat{f} + \widehat{g}$$

1.3 Translation (Verschiebung im Ortsraum)

$$g(x) := f(x - x_0)$$
 \Rightarrow $\hat{g}(k) = \exp(-ik \cdot x_0) \hat{f}(k)$

1.4 Modulation (Verschiebung im Frequenzraum)

$$g(x) := \exp(+ik_0 \cdot x) f(x)$$
 \Rightarrow $\hat{g}(k) = \hat{f}(k - k_0)$

1.5 Skalierung

$$g(x) := f\left(\frac{x}{\lambda}\right) \qquad \Rightarrow \qquad \hat{g}(k) = \lambda^n \hat{f}(\lambda k)$$

Lösung 1.

1.1. Die Homogenität der Fourier-Transformation folgt unmittelbar aus der Definition der Fourier-Transformation als Integraltransformation

$$\widehat{\alpha f}(k) = (2\pi)^{-n/2} \int_{\mathbb{R}^n} \exp\left(-ik \cdot x\right) \left(\alpha f(x)\right) d^n x \tag{0.1}$$

$$= \alpha \left((2\pi)^{-n/2} \int_{\mathbb{P}^n} \exp\left(-ik \cdot x\right) f(x) d^n x \right)$$
 (0.2)

$$= \alpha \hat{f}(k) \tag{0.3}$$

1.2. Auch die Linearität der Fourier-Transformation ist eine direkte Konsequenz der Definition der Fourier-Transformation als Integraltransformation

$$\widehat{f+g}(k) = (2\pi)^{-n/2} \int_{\mathbb{R}^n} \exp\left(-ik \cdot x\right) \left(f(x) + g(x)\right) d^n x \tag{0.4}$$

$$= (2\pi)^{-n/2} \int_{\mathbb{R}^n} \exp(-ik \cdot x) f(x) d^n x + (2\pi)^{-n/2} \int_{\mathbb{R}^n} \exp(-ik \cdot x) g(x) d^n x \quad (0.5)$$

$$=\hat{f}(k)+\hat{g}(k) \tag{0.6}$$

1.3. Zum Beweis der Translationseigenschaft der Fourier-Transformation setzen wir die gegebene Funktion $g(x) := f(x - x_0)$ in die Definition der Fourier-Transformation ein und erhalten

$$\hat{g}(k) = (2\pi)^{-n/2} \int_{\mathbb{D}^n} \exp(-ik \cdot x) g(x) d^n x$$
 (0.7)

$$= (2\pi)^{-n/2} \int_{\mathbb{D}_n} \exp(-ik \cdot x) f(x - x_0) d^n x$$
 (0.8)

Mittels der Variablentransformation $\tilde{x} := x - x_0$ lässt sich dies zu

$$\cdots = (2\pi)^{-n/2} \int_{\mathbb{R}^n} \exp\left(-ik \cdot (\tilde{x} + x_0)\right) f(\tilde{x}) d^n \tilde{x}$$
 (0.9)

umschreiben. Aufspalten des Exponentialfaktors ergibt schließlich

$$\dots = \left((2\pi)^{-n/2} \int_{\mathbb{R}^n} \exp\left(-ik \cdot \tilde{x}\right) \exp\left(-ik \cdot x_0\right) f(\tilde{x}) d^n \tilde{x} \right)$$
(0.10)

$$= \exp\left(-\mathrm{i}k \cdot x_0\right) \left(\left(2\pi\right)^{-n/2} \int_{\mathbb{R}^n} \exp\left(-\mathrm{i}k \cdot \tilde{x}\right) f(\tilde{x}) \, \mathrm{d}^n \tilde{x} \right) \tag{0.11}$$

$$= \exp\left(-ik \cdot x_0\right) \hat{f}(k) \tag{0.12}$$

Wir erkennen, dass sich eine Verschiebung um $-x_0$ im Ortsraum in eine Multiplikation mit dem Faktor $\exp(-ik \cdot x_0)$ übersetzt.

1.4. Zum Beweis der Modulationseigenschaft der Fourier-Transformation gehen wir analog zur vorausgegangenen Teilaufgabe vor indem wir die gegebene Funktion $g(x) := \exp(+ik_0 \cdot x) f(x)$ in die Definition der Fourier-Transformation einsetzen

$$\hat{g}(k) = (2\pi)^{-n/2} \int_{\mathbb{D}^n} \exp(-ik \cdot x) g(x) d^n x$$
(0.13)

$$= (2\pi)^{-n/2} \int_{\mathbb{R}^n} \exp\left(-ik \cdot x\right) \exp\left(+ik_0 \cdot x\right) f(x) d^n x \qquad (0.14)$$

Fasst man die beiden Exponentialfaktoren zusammen, so erhält man schließlich

... =
$$(2\pi)^{-n/2} \int_{\mathbb{R}^n} \exp(-i(k - k_0) \cdot x) f(x) d^n x$$
 (0.15)

$$= \hat{f}(k - k_0) \tag{0.16}$$

Analog zur vorausgegangenen Teilaufgabe erkennen wir, dass sich die Multiplikation der Funktion im Ortsraum mit einem Phasenfaktor $\exp(+ik_0 \cdot x)$ in eine Verschiebung um $-k_0$ im Impulsraum übersetzt.

1.5. Zum Schluss beweisen wir auch noch die Skalierungseigenschaft der Fourier-Transformation was erneut direkt über Einsetzen der gegebenen Funktion $g(x) := f\left(\frac{x}{\lambda}\right)$ in die Definition erfolgt

$$\hat{g}(k) = (2\pi)^{-n/2} \int_{\mathbb{D}_n} \exp(-ik \cdot x) g(x) d^n x$$
 (0.17)

$$= (2\pi)^{-n/2} \int_{\mathbb{R}^n} \exp\left(-ik \cdot x\right) f\left(\frac{x}{\lambda}\right) d^n x \tag{0.18}$$

Mittels der Variablentransformation $\tilde{x} := \frac{x}{\lambda}$ lässt sich dies zu

... =
$$(2\pi)^{-n/2} \int_{\mathbb{R}^n} \exp\left(-ik \cdot (\lambda \tilde{x})\right) f(\tilde{x}) \lambda^n d^n \tilde{x}$$
 (0.19)

$$= \lambda^{n} \left((2\pi)^{-n/2} \int_{\mathbb{R}^{n}} \exp\left(-\mathrm{i}(\lambda k) \cdot \tilde{x}\right) f(\tilde{x}) \, \mathrm{d}^{n} \tilde{x} \right)$$
 (0.20)

Nachdem X aus \mathbb{R}^n stammt, bedeutet die Variablentransformation $\tilde{x} := \frac{x}{\lambda}$ ausgeschrieben $\tilde{x}_i := \frac{x_i}{\lambda}$ für jedes $i \in \{1, 2, ..., n\}$. Damit ergibt sich für das Differential ein Faktor λ^n statt λ . Zieht man diesen konstanten Faktor vor das Integral so erhält man schließlich

$$\dots = \lambda^n \hat{f}(\lambda k) \tag{0.21}$$

Aufgabe 2 (Fourier-Transformation I) Berechnen Sie die Fourier-Transformierten \hat{f} der folgenden Funktionen $f \in \mathcal{S}(\mathbb{R})$:

2.1

$$f(x) = \begin{cases} x & \text{für } |x| < 1\\ 0 & \text{für } |x| \ge 1 \end{cases}$$

HINWEIS: Diese Aufgabe lässt sich auf zwei unterschiedlichen Wegen lösen. Versuchen Sie beide Lösungswege zu ergründen.

2.2

$$f(x) = \begin{cases} \cos(x) & \text{für } |x| < \frac{\pi}{2} \\ 0 & \text{für } |x| \ge 0 \end{cases}$$

HINWEIS: Auch diese Aufgabe lässt sich auf zwei unterschiedlichen Wegen lösen. Versuchen Sie wiederum beide Lösungswege zu ergründen.

2.3

$$f(x) = \exp\left(-|x|\right)$$

2.4

$$f(x) = \begin{cases} 1 - \frac{|x|}{R} & \text{für } |x| < R \\ 0 & \text{für } |x| \ge R \end{cases}$$

2.5

$$f(x) = \exp\left(-\frac{1}{2}x^2\right)\cos(x)$$

HINWEIS: Lösen Sie dieses Integral zunächst explizit unter Zuhilfenahme der auch in der Vorlesung verwendeten Technik und anschließend der Eigenschaften der Fourier-Transformation.

2.6

$$f(x) = \frac{1}{|x|^{\alpha}} \quad \text{für } 0 < \alpha < 1$$

HINWEIS: Überlegen Sie sich zunächst für welche Werte von $k \in \mathbb{R}$ das Fourier-Integral existiert und berechnen Sie dieses anschließend unter Ausnutzung seiner Symmetrieeigenschaften.

Lösung 2 (Fourier-Transformation I).

2.1. Setzt man die Funktion f(x) in die Definition der Fourier-Transformierten $\hat{f}(k)$ ein, so ergibt sich

$$\hat{f}(k) = \frac{1}{\sqrt{2\pi}} \int_{-1}^{1} \exp(-ikx) x \, dx$$
 (0.22)

Um dieses Integral zu berechnen, stellen wir den Integranden $\exp(-ikx)x$ als Ableitung von $\exp(-ikx)$ nach k dar

$$x \exp(-ikx) = -\frac{1}{i} \frac{d}{dk} \exp(-ikx)$$
 (0.23)

Damit ergibt sich

$$\cdots = \frac{1}{\sqrt{2\pi}} \int_{-1}^{1} \left(-\frac{1}{\mathrm{i}} \frac{\mathrm{d}}{\mathrm{d}k} \exp\left(-\mathrm{i}kx\right) \right) \, \mathrm{d}x = \frac{\mathrm{i}}{\sqrt{2\pi}} \frac{\mathrm{d}}{\mathrm{d}k} \int_{-1}^{1} \exp\left(-\mathrm{i}kx\right) \, \mathrm{d}x \tag{0.24}$$

wobei wir die Ableitung nach k aus dem Integral gezogen haben. Führt man das verbliebene Integral aus, so erhält man

$$\cdots = \frac{\mathrm{i}}{\sqrt{2\pi}} \frac{\mathrm{d}}{\mathrm{d}k} \left[\frac{\exp\left(-\mathrm{i}kx\right)}{-\mathrm{i}k} \right]_{-1}^{1} = \frac{\mathrm{i}}{\sqrt{2\pi}} \frac{\mathrm{d}}{\mathrm{d}k} \left(\frac{\exp\left(-\mathrm{i}k\right) - \exp\left(+\mathrm{i}k\right)}{\mathrm{i}k} \right) \tag{0.25}$$

Verwendet man die Exponentialdarstellung der Sinusfunktion

$$\sin(x) = \frac{1}{2i} (\exp(+ix) - \exp(-ix))$$
 (0.26)

so lässt sich der Ausdruck vereinfachen und man erhält schlussendlich

$$\cdots = \frac{i}{\sqrt{2\pi}} \frac{d}{dk} \left(\frac{-2i\sin(k)}{-ik} \right) = i\sqrt{\frac{2}{\pi}} \frac{k\cos(k) - \sin(k)}{k^2}$$
 (0.27)

2.2. Setzt man die Funktion f(x) in die Definition der Fourier-Transformierten $\hat{f}(k)$ ein, so ergibt sich

$$\hat{f}(k) = \frac{1}{\sqrt{2\pi}} \int_{-\pi/2}^{+\pi/2} \exp(-ikx)\cos(x) dx$$
 (0.28)

Wir berechnen das Integral zunächst, indem wir die Kosinusfunktion durch ihre Exponentialdarstellung

$$\cos(x) = \frac{1}{2} (\exp(ix) + \exp(-ix))$$
 (0.29)

ersetzen

... =
$$\frac{1}{\sqrt{2\pi}} \int_{-\pi/2}^{+\pi/2} \exp(-ikx) \cdot \frac{1}{2} (\exp(ix) + \exp(-ix))$$
 (0.30)

$$= \frac{1}{\sqrt{8\pi}} \left(\int_{-\pi/2}^{+\pi/2} \exp\left(-i(k-1)x\right) dx + \int_{-\pi/2}^{+\pi/2} \exp\left(-i(k+1)x\right) dx \right)$$
(0.31)

Berechnet man das Integral so ergibt sich

$$\dots = \frac{1}{\sqrt{8\pi}} \left(\left[\frac{\exp\left(-i(k-1)x\right)}{-i(k-1)} \right]_{-\pi/2}^{+\pi/2} + \left[\frac{\exp\left(-i(k+1)x\right)}{-i(k+1)} \right]_{-\pi/2}^{+\pi/2} \right) \tag{0.32}$$

$$= \frac{1}{\sqrt{8\pi}} \left(\frac{1}{-i(k-1)} \left[\exp\left(-i(k-1)\frac{\pi}{2}\right) - \exp\left(+i(k-1)\frac{\pi}{2}\right) \right]$$
 (0.33)

$$+\frac{1}{-\mathrm{i}(k+1)}\left[\exp\left(-\mathrm{i}(k+1)\frac{\pi}{2}\right) - \exp\left(+\mathrm{i}(k+1)\frac{\pi}{2}\right)\right]\right) \tag{0.34}$$

$$= \frac{1}{\sqrt{8\pi}} \left(\frac{1}{-i(k-1)} \left[\exp\left(i\frac{\pi}{2}\right) \exp\left(-ik\frac{\pi}{2}\right) - \exp\left(-i\frac{\pi}{2}\right) \exp\left(+ik\frac{\pi}{2}\right) \right]$$
(0.35)

$$+\frac{1}{-\mathrm{i}(k+1)}\left[\exp\left(-\mathrm{i}\frac{\pi}{2}\right)\exp\left(-\mathrm{i}k\frac{\pi}{2}\right)-\exp\left(\mathrm{i}\frac{\pi}{2}\right)\exp\left(+\mathrm{i}k\frac{\pi}{2}\right)\right]\right)\ (0.36)$$

wobei wir die Exponentialfaktoren aufgespaltet haben. Mit $\exp\left(\pm i\frac{\pi}{2}\right) = \pm i$ ergibt sich

$$\dots = \frac{1}{\sqrt{8\pi}} \left(-\frac{1}{k-1} \left[\exp\left(-ik\frac{\pi}{2}\right) + \exp\left(+ik\frac{\pi}{2}\right) \right]$$
 (0.37)

$$+\frac{1}{k+1} \left[\exp\left(-\mathrm{i}k\frac{\pi}{2}\right) + \exp\left(+\mathrm{i}k\frac{\pi}{2}\right) \right] \right) \tag{0.38}$$

Bemüht man die Exponentialdarstellung der Kosinusfunktion

$$\cos(x) = \frac{1}{2} (\exp(+ix) + \exp(-ix))$$
 (0.39)

so ergibt sich

$$\dots = \frac{1}{\sqrt{8\pi}} \left(-\frac{2}{k-1} \cos\left(k\frac{\pi}{2}\right) + \frac{2}{k+1} \cos\left(k\frac{\pi}{2}\right) \right) \tag{0.40}$$

$$= \frac{1}{\sqrt{2\pi}} \left(-\frac{k+1}{k^2 - 1} + \frac{k-1}{k^2 - 1} \right) \cos\left(k\frac{\pi}{2}\right) \tag{0.41}$$

$$= \sqrt{\frac{2}{\pi}} \frac{\cos\left(k\frac{\pi}{2}\right)}{1 - k^2} \tag{0.42}$$

wobei wir im vorletzten Schritt durch geeignetes Erweitern sowie im letzten Schritt durch Verrechnen des Minuszeichens sowie des auftretenden Faktors Zwei das Ergebnis vereinfacht haben.

2.3. Setzt man die Funktion f(x) in die Definition der Fourier-Transformierten $\hat{f}(k)$ ein, so ergibt sich

$$\hat{f}(k) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \exp\left(-ikx\right) \exp\left(-|x|\right) dx = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \exp\left(-ikx - |x|\right) dx \tag{0.43}$$

Um uns des Betrags im Argument des Exponentials zu entledigen spalten wir das Integral wie folgt auf

$$\dots = \frac{1}{\sqrt{2\pi}} \left(\int_{-\infty}^{0} \exp\left(-ikx + x\right) dx + \int_{0}^{\infty} \exp\left(-ikx - x\right) dx \right)$$
 (0.44)

$$= \frac{1}{\sqrt{2\pi}} \left(\int_{-\infty}^{0} \exp([1 - ik] x) dx + \int_{0}^{\infty} \exp(-[1 + ik] x) dx \right)$$
 (0.45)

um diese schließlich zu integrieren

$$\dots = \frac{1}{\sqrt{2\pi}} \left(\left[\frac{\exp([1 - ik] x)}{1 - ik} \right]_{-\infty}^{0} - \left[\frac{\exp(-[1 + ik] x)}{1 + ik} \right]_{0}^{\infty} \right)$$
(0.46)

Auswertung an den Grenzen und Vereinfachung der entstehenden Ausdrücke liefert schließlich

$$\dots = \frac{1}{\sqrt{2\pi}} \left(\frac{1}{1 - ik} + \frac{1}{1 + ik} \right) = \frac{1}{\sqrt{2\pi}} \left(\frac{1 + ik}{1 + k^2} + \frac{1 - ik}{1 + k^2} \right) = \sqrt{\frac{2}{\pi}} \frac{1}{1 + k^2} \tag{0.47}$$

2.4. Setzt man die Funktion f(x) in die Definition der Fourier-Transformierten $\hat{f}(k)$ ein, so ergibt sich

$$\hat{f}(k) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \exp\left(-ikx\right) \left(1 - \frac{|x|}{R}\right) dx = \frac{1}{\sqrt{2\pi}} \int_{-R}^{R} \exp\left(-ikx\right) \left(1 - \frac{|x|}{R}\right) dx \quad (0.48)$$

wobei wir verwendet haben, dass die Funktion f(x) nur im Intervall (-R,R) nichtverschwindende Werte annimmt. Analog zur vorhergehenden Aufgabe lösen wir den Betrag auf, indem wir das Integral aufspalten und die Terme geeignet sortieren

$$\dots = \frac{1}{\sqrt{2\pi}} \left(\int_{-R}^{0} \exp(-ikx) \left(1 + \frac{x}{R} \right) dx + \int_{0}^{R} \exp(-ikx) \left(1 - \frac{x}{R} \right) dx \right)$$

$$= \frac{1}{\sqrt{2\pi}} \left(\int_{-R}^{R} \exp(-ikx) dx + \frac{1}{R} \int_{-R}^{0} x \exp(-ikx) dx - \frac{1}{R} \int_{0}^{R} x \exp(-ikx) dx \right)$$
(0.49)
$$(0.50)$$

Um die hinteren beiden Integrale zu lösen, stellen wir die Integranden wie folgt als Ableitungen von $\exp(-ikx)$ nach k dar

$$\pm x \exp\left(-ikx\right) = \mp \frac{1}{i} \frac{d}{dk} \exp\left(-ikx\right) \tag{0.51}$$

Damit ergibt sich

$$\cdots = \frac{1}{\sqrt{2\pi}} \left(\int_{-R}^{R} \exp\left(-ikx\right) dx - \frac{1}{iR} \frac{d}{dk} \int_{-R}^{0} \exp\left(-ikx\right) dx + \frac{1}{iR} \frac{d}{dk} \int_{0}^{R} \exp\left(-ikx\right) dx \right) \right)$$

$$(0.52)$$

Berechnet man die Integrale und verwendet anschließend die Exponentialdarstellungen der Sinus- und Kosinusfunktion

$$\sin(x) = \frac{1}{2i} (\exp(+ix) - \exp(-ix))$$
 (0.53)

$$\cos(x) = \frac{1}{2} (\exp(+ix) + \exp(-ix))$$
 (0.54)

so ergibt sich

$$\dots = \frac{1}{\sqrt{2\pi}} \left(\left[-\frac{\exp\left(-\mathrm{i}kx\right)}{\mathrm{i}k} \right]_{-R}^{R} - \frac{1}{\mathrm{i}R} \left[-\frac{\exp\left(-\mathrm{i}kx\right)}{\mathrm{i}k} \right]_{-R}^{0} + \frac{1}{\mathrm{i}R} \left[-\frac{\exp\left(-\mathrm{i}kx\right)}{\mathrm{i}k} \right]_{0}^{R} \right) (0.55)$$

$$= \frac{1}{\sqrt{2\pi}} \left(\frac{2}{k} \sin(kR) + \frac{1}{iR} \frac{d}{dk} \left(\frac{1 - \exp(ikR)}{ik} \right) + \frac{1}{iR} \frac{d}{dk} \left(\frac{1 - \exp(-ikR)}{ik} \right) \right) \quad (0.56)$$

$$= \frac{1}{\sqrt{2\pi}} \left(\frac{2}{k} \sin(kR) - \frac{\mathrm{d}}{\mathrm{d}k} \left(\frac{2 - \exp(\mathrm{i}kR) - \exp(-\mathrm{i}kR)}{kR} \right) \right) \tag{0.57}$$

$$= \frac{1}{\sqrt{2\pi}} \left(\frac{2}{k} \sin(kR) - \frac{\mathrm{d}}{\mathrm{d}k} \left(\frac{2 - 2\cos(kR)}{kR} \right) \right) \tag{0.58}$$

$$= \frac{1}{\sqrt{2\pi}} \left(\frac{2}{k} \sin(kR) - \frac{kR \cdot 2R \sin(kR) - (2 - 2\cos(kR)) \cdot R}{k^2 R^2} \right) \tag{0.59}$$

$$= \frac{1}{\sqrt{2\pi}} \frac{2(1 - \cos(kR))}{k^2 R} \tag{0.60}$$

Mit der Doppelwinkelfunktion $1 - \cos(2x) = 2\sin^2(x)$ ergibt sich schließlich

$$\cdots = \frac{4}{\sqrt{2\pi}} \frac{\sin^2\left(\frac{kR}{2}\right)}{k^2 R} = \frac{R}{\sqrt{2\pi}} \frac{\sin^2\left(\frac{kR}{2}\right)}{\left(\frac{kR}{2}\right)^2} = \frac{R}{\sqrt{2\pi}} \operatorname{sinc}^2\left(\frac{kR}{2}\right)$$
(0.61)

2.5. Setzt man die Funktion f(x) in die Definition der Fourier-Transformierten $\hat{f}(k)$ ein, so ergibt sich

$$\hat{f}(k) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \exp(-ikx) \exp\left(-\frac{1}{2}x^2\right) \cos(x) dx \qquad (0.62)$$

Um dieses Integral berechnen zu können, ersetzen wir zunächst die Kosinusfunktion durch ihre Exponentialdarstellung, fassen die Exponentialfunktionen zusammen und teilen das Integral auf

$$\dots = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \exp\left(-ikx\right) \exp\left(-\frac{1}{2}x^2\right) \frac{1}{2} \left(\exp\left(+ix\right) + \exp\left(-ix\right)\right) dx \tag{0.63}$$

$$= \frac{1}{\sqrt{8\pi}} \int_{\mathbb{R}} \exp\left(-\frac{1}{2}x^2 - ikx\right) \left(\exp\left(+ix\right) + \exp\left(-ix\right)\right) dx \tag{0.64}$$

$$= \frac{1}{\sqrt{8\pi}} \int_{\mathbb{R}} \exp\left(-\frac{1}{2}x^2 - i(k-1)x\right) dx + \frac{1}{\sqrt{8\pi}} \int_{\mathbb{R}} \exp\left(-\frac{1}{2}x^2 - i(k+1)x\right) dx$$

$$(0.65)$$

An dieser Stelle erinnern wir uns an die Vorlesung wo wir zur Berechnung derartiger Integrale die Argumente der Exponentialfuntionen durch quadratisches Ergänzen zu einem vollständigen Quadrat umgeschrieben haben

$$-\frac{1}{2}x^2 - i(k \mp 1)x = -\frac{1}{2}\left(x^2 + 2i(k \mp 1)x\right)$$
 (0.66)

$$= -\frac{1}{2} \left(x^2 + 2i(k \mp 1) + (i(k \mp 1))^2 - (i(k \mp 1))^2 \right)$$
 (0.67)

$$= -\frac{1}{2} \left((x + i(k \mp 1))^2 + (k \mp 1)^2 \right)$$
 (0.68)

$$= -\frac{1}{2} (x + i(k \mp 1))^2 - \frac{1}{2} (k \mp 1)^2$$
 (0.69)

Setzt man dies ein, so ergibt sich

$$\dots = \frac{1}{\sqrt{8\pi}} \int_{\mathbb{R}} \exp\left(-\frac{1}{2} (x + i(k-1))^2 - \frac{1}{2} (k-1)^2\right) dx$$
 (0.70)

$$+\frac{1}{\sqrt{8\pi}} \int_{\mathbb{R}} \exp\left(-\frac{1}{2} (x + i(k+1))^2 - \frac{1}{2} (k+1)^2\right) dx$$
 (0.71)

Spaltet man die Exponentialfunktionen auf und führt die Variablentransformationen $\tilde{x} := x + i(k \mp 1)$ durch, so erhält man

$$\dots = \frac{\exp\left(-\frac{1}{2}(k-1)^2\right)}{\sqrt{8\pi}} \int_{\mathbb{R}} \exp\left(-\frac{1}{2}\tilde{x}^2\right) d\tilde{x} + \frac{\exp\left(-\frac{1}{2}(k+1)^2\right)}{\sqrt{8\pi}} \int_{\mathbb{R}} \exp\left(-\frac{1}{2}\tilde{x}^2\right) d\tilde{x}$$

$$(0.72)$$

$$= \left(\frac{\exp\left(-\frac{1}{2}(k-1)^2\right)}{\sqrt{8\pi}} + \frac{\exp\left(-\frac{1}{2}(k+1)^2\right)}{\sqrt{8\pi}}\right) \int_{\mathbb{R}} \exp\left(-\frac{1}{2}\tilde{x}^2\right) d\tilde{x}$$
 (0.73)

Mit dem aus der Vorlesung vertrauten Gauß-Integral ergibt sich

... =
$$\left(\frac{\exp\left(-\frac{1}{2}(k-1)^2\right)}{\sqrt{8\pi}} + \frac{\exp\left(-\frac{1}{2}(k+1)^2\right)}{\sqrt{8\pi}}\right)\sqrt{2\pi}$$
 (0.74)

$$= \frac{1}{2} \left(\exp\left(-\frac{1}{2}(k-1)^2\right) + \exp\left(-\frac{1}{2}(k+1)^2\right) \right) \tag{0.75}$$

Ausmultiplizieren der Argumente der Exponentialfunktionen und Ausklammern gemeinsamer Faktoren liefert

... =
$$\frac{1}{2} \left(\exp \left(-\frac{1}{2} \left(k^2 - 2k + 1 \right) \right) + \exp \left(-\frac{1}{2} \left(k^2 + 2k + 1 \right) \right) \right)$$
 (0.76)

$$= \exp\left(-\frac{1}{2}(k^2 + 1)\right) \cdot \frac{1}{2}(\exp(+k) + \exp(-k))$$
 (0.77)

Hier erkennen wir die Exponentialdarstellung des Kosinus Hyperbolicus

$$\cosh(x) = \frac{1}{2} (\exp(+x) + \exp(-x))$$
 (0.78)

und finden damit schlussendlich

$$\dots = \exp\left(-\frac{1}{2}\left(k^2 + 1\right)\right)\cosh\left(k\right) \tag{0.79}$$

2.6. Setzt man die Funktion f(x) in die Definition der Fourier-Transformierten $\hat{f}(k)$ ein, so ergibt sich

$$\hat{f}(k) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{D}} \exp\left(-ikx\right) |x|^{-\alpha} dx \qquad (0.80)$$

Bevor wir uns an die Berechnung dieser Fourier-transformierten machen, überlegen wir uns entsprechend des angegebenen Hinweises zunächst für welche Werte von $k \in \mathbb{R}$ das Integral existiert. Für k=0 kollabiert der Exponentialfaktor zu Eins und es verbleibt

$$\hat{f}(0) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{T}_0} \frac{1}{|x|^{\alpha}} \, \mathrm{d}x \tag{0.81}$$

Wie unschwer zu erkennen ist divergiert dieses Integral, sodass wir im Folgenden nur die Fourier-Transformierte für $k \neq 0$ berechnen.

An dieser Stelle nutzen wir erneut den Hinweis und untersuchen den Integranden auf etwaige Symmetrieeigenschaften. Dazu schreiben wir zunächst die Exponentialfunktion für $k \neq 0$ wie folgt um

$$\hat{f}(k) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} (\cos(kx) - i\sin(kx)) |x|^{-\alpha} dx$$

$$(0.82)$$

$$= \frac{1}{\sqrt{2\pi}} \left(\int_{\mathbb{R}} \cos(kx) |x|^{-\alpha} dx - i \int_{\mathbb{R}} \sin(kx) |x|^{-\alpha} dx \right)$$
 (0.83)

und bemerken, dass die Betragsfunktion sowie die Kosinusfunktion offensichtlich symmetrisch bezüglich der Spiegelung an x=0 sind während die Sinusfunktion antisymmetrisch bezüglich der Spiegelung an x=0 ist. Nachdem der Integrationsbereich aber symmetrisch bezüglich x=0 ist, verschwindet das zweite Integral aus Symmetriegründen und es verbleibt

$$\cdots = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \cos(kx) |x|^{-\alpha} dx = \frac{2}{\sqrt{2\pi}} \int_{0}^{\infty} \cos(kx) x^{-\alpha} dx \qquad (0.84)$$

 $Mit\ der\ Variablen transformation\ t=kx\ l\"{a}sst\ sich\ dieses\ Integral\ schließlich\ zu$

$$\cdots = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \cos(t) \left(\frac{t}{k}\right)^{-\alpha} \frac{\mathrm{d}t}{k} = \sqrt{\frac{2}{\pi}} k^{\alpha - 1} \int_{0}^{\infty} \cos(t) t^{-\alpha} \, \mathrm{d}t \tag{0.85}$$

umschreiben.

Aufgabe 3 (Fourier-Transformation II) Wir betrachten die durch

$$f(t) = \begin{cases} 0 & \text{für } t < 0\\ \frac{1}{2} & \text{für } t = 0\\ \exp((-\lambda + ia)t) & \text{für } t > 0 \end{cases}$$

definierte Funktion wobei $\lambda \in \mathbb{R}^+$ und $a \in \mathbb{R}$.

- **3.1** Berechnen Sie die Fourier-Transformierte $\hat{f}(\omega)$ der Funktion f(t).
- **3.2** Wie lauten für Zeiten $t \geq 0$ die Fourier-Transformierten $\hat{x}(\omega)$ und $\hat{y}(\omega)$ der gedämpften Schwingungen

$$x(t) = \exp(-\lambda t)\cos(\Omega t)$$

$$y(t) = \exp(-\lambda t)\sin(\Omega t)$$

wobei $\Omega \in \mathbb{R}$?

Lösung 3 (Fourier-Transformation II).

3.1. Setzt man die Funktion f(t) in die Definition der Fourier-Transformierten $\hat{f}(\omega)$ ein, so ergibt sich

$$\hat{f}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \exp(-i\omega t) f(t) dt = \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} \exp(-i\omega t) \exp((-\lambda + ia) t) dt \qquad (0.86)$$

An dieser Stelle haben wir verwendet, dass die Funktion f nur für $t \geq 0$ nicht-verschwindende Werte annimmt. Obwohl die Funktion bei t=0 den Wert 1/2 annimmt, können wir dies getrost ignorieren, da der Punkt t=0 bezüglich der Menge der reellen Zahlen $\mathbb R$ eine Nullmenge darstellt. Fasst man die Exponentialfunktionen zusammen und führt die Integration aus, so ergibt sich

$$\dots = \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} \exp\left(-\left(\lambda + i(\omega + a)\right)t\right) dt = \frac{1}{\sqrt{2\pi}} \left[\frac{\exp\left(-\left(\lambda + i(\omega + a)\right)t\right)}{-\left(\lambda + i(\omega + a)\right)}\right]_{0}^{\infty}$$
(0.87)

$$= \frac{1}{\sqrt{2\pi}} \left[\lim_{T \to \infty} \frac{\exp\left(-\left(\lambda + i(\omega + a)\right)T\right) - 1}{-\left(\lambda + i(\omega + a)\right)} \right] = \frac{1}{\sqrt{2\pi}} \frac{1}{\lambda + i(\omega + a)}$$
(0.88)

3.2. Setzt man die Funktionen f(t) in die Definition der Fourier-Transformierten $\hat{f}(\omega)$ ein, so ergibt sich

$$\hat{f}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \exp(-i\omega t) f(t) dt$$
 (0.89)

$$= \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} \exp(-i\omega t) \exp(-\lambda t) \begin{cases} \cos(\Omega t) \\ \sin(\Omega t) \end{cases} dt$$
 (0.90)

Fasst man die Exponentialfunktionen zusammen und schreibt die Kosinus- und Sinusfunktion in deren Exponentialdarstellung, so ergibt sich

$$\dots = \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} \exp\left(-\left(\lambda + i\omega\right)t\right) \begin{cases} \frac{1}{2} \left(\exp\left(i\Omega t\right) + \exp\left(-i\Omega t\right)\right) \\ \frac{1}{2i} \left(\exp\left(i\Omega t\right) - \exp\left(-i\Omega t\right)\right) \end{cases} dt$$
 (0.91)

$$= \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} \begin{cases} \frac{1}{2} \left(\exp\left(-\left(\lambda + i(\omega - \Omega)\right) t \right) + \exp\left(-\left(\lambda + i(\omega + \Omega)\right) t \right) \right) \\ \frac{1}{2i} \left(\exp\left(-\left(\lambda + i(\omega - \Omega)\right) t \right) - \exp\left(-\left(\lambda + i(\omega + \Omega)\right) t \right) \right) \end{cases} dt \qquad (0.92)$$

Hier erkennen wir mit der Identifikation $\mp \Omega \equiv a_{\mp}$ exakt die Integrale aus der vorausgegangenen Teilaufgabe. Verwendet man das dortige Ergebnis, so finden wir

$$\dots = \frac{1}{\sqrt{2\pi}} \begin{cases} \frac{1}{2} \left(\frac{1}{\lambda + i(\omega + a_{-})} + \frac{1}{\lambda + i(\omega + a_{+})} \right) \\ \frac{1}{2i} \left(\frac{1}{\lambda + i(\omega + a_{-})} - \frac{1}{\lambda + i(\omega + a_{+})} \right) \end{cases}$$
(0.93)

$$= \frac{1}{\sqrt{2\pi}} \begin{cases} \frac{1}{2} \left(\frac{1}{\sqrt{2\pi}} \frac{1}{(\lambda + i\omega) - i\Omega} + \frac{1}{\sqrt{2\pi}} \frac{1}{(\lambda + i\omega) + i\Omega} \right) \\ \frac{1}{2i} \left(\frac{1}{\sqrt{2\pi}} \frac{1}{(\lambda + i\omega) - i\Omega} - \frac{1}{\sqrt{2\pi}} \frac{1}{(\lambda + i\omega) + i\Omega} \right) \end{cases}$$
(0.94)

Macht man den Nenner rational, so finden wir

$$\dots = \frac{1}{\sqrt{2\pi}} \begin{cases} \frac{1}{2} \left(\frac{(\lambda + i\omega) + i\Omega}{(\lambda + i\omega)^2 + \Omega^2} + \frac{(\lambda + i\omega) - i\Omega}{(\lambda + i\omega)^2 + \Omega^2} \right) \\ \frac{1}{2i} \left(\frac{(\lambda + i\omega) + i\Omega}{(\lambda + i\omega)^2 + \Omega^2} - \frac{(\lambda + i\omega) - i\Omega}{(\lambda + i\omega)^2 + \Omega^2} \right) \end{cases}$$
(0.95)

$$= \frac{1}{\sqrt{2\pi}} \begin{cases} \frac{\lambda + i\omega}{(\lambda + i\omega)^2 + \Omega^2} \\ \frac{\Omega}{(\lambda + i\omega)^2 + \Omega^2} \end{cases}$$
(0.96)

Aufgabe 4 (Fourier-Transformation III) Gegeben sei ein dreifacher Tiefpass, der durch die Differentialgleichung

$$\left(\alpha \frac{\mathrm{d}}{\mathrm{d}t} + 1\right)^3 x(t) = s(t)$$

mit der Konstante $\alpha = RC > 0$ und der Eingangsfunktion s(t) beschrieben wird. Die Fourier-Transformierten der Funktionen x(t) und s(t) seien $\hat{x}(\omega)$ und $\hat{s}(\omega)$.

- **4.1** Welche Eigenschaften muss die Eingangsfunktion s(t) besitzen, damit eine Fourier-Transformation durchgeführt werden kann?
- **4.2** Formulieren Sie durch Anwendung der Fourier-Transformation die im Zeitbereich gegebene Differentialgleichung im Frequenzbereich.
- 4.3 Bestimmen Sie die durch

$$\hat{h}(\omega) := \frac{\hat{x}(\omega)}{\hat{s}(\omega)}$$

definierte Übertragungsfunktion $\hat{h}(\omega)$.

Lösung 4.

- **4.1.** Aus der Vorlesung wissen wir, dass eine Funktion nur dann eine Fourier-Transformierte besitzt, wenn das Fourier-Integral existiert. Dementsprechend muss die Eingangsfunktion s eine $L^1(\mathbb{R})$ -Funktion sein.
- **4.2.** Um die gegebene Differentialgleichung im Frequenzbereich zu formulieren setzen wir die Fourier-Darstellungen der Funktionen x(t) und s(t) ein

$$x(t) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{D}} \exp(+i\omega t) \,\hat{x}(\omega) \,d\omega \qquad (0.97)$$

$$s(t) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \exp(+i\omega t) \,\hat{s}(\omega) \,d\omega \qquad (0.98)$$

und erhalten damit

$$\left(\alpha \frac{\mathrm{d}}{\mathrm{d}t} + 1\right)^{3} \left(\frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \exp\left(+\mathrm{i}\omega t\right) \hat{x}(\omega) \,\mathrm{d}\omega\right) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \exp\left(+\mathrm{i}\omega t\right) \hat{s}(\omega) \,\mathrm{d}\omega \qquad (0.99)$$

Die linke Seite ergibt dabei

$$\left(\alpha \frac{\mathrm{d}}{\mathrm{d}t} + 1\right)^{3} \left(\frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \exp\left(+\mathrm{i}\omega t\right) \hat{x}(\omega) \,\mathrm{d}\omega\right)$$

$$= \left(\alpha \frac{\mathrm{d}}{\mathrm{d}t} + 1\right)^{2} \left(\frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \mathrm{i}\alpha\omega \exp\left(+\mathrm{i}\omega t\right) \hat{x}(\omega) \,\mathrm{d}\omega + \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \exp\left(+\mathrm{i}\omega t\right) \hat{x}(\omega) \,\mathrm{d}\omega\right)$$

$$= \left(\alpha \frac{\mathrm{d}}{\mathrm{d}t} + 1\right) \left(\frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} (\mathrm{i}\alpha\omega)^{2} \exp\left(+\mathrm{i}\omega t\right) \hat{x}(\omega) \,\mathrm{d}\omega + \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \mathrm{i}\alpha\omega \exp\left(+\mathrm{i}\omega t\right) \hat{x}(\omega) \,\mathrm{d}\omega\right)$$

$$= \left(\alpha \frac{\mathrm{d}}{\mathrm{d}t} + 1\right) \left(\frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} (\mathrm{i}\alpha\omega)^{2} \exp\left(+\mathrm{i}\omega t\right) \hat{x}(\omega) \,\mathrm{d}\omega + \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \mathrm{i}\alpha\omega \exp\left(+\mathrm{i}\omega t\right) \hat{x}(\omega) \,\mathrm{d}\omega\right)$$

$$+\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty} i\alpha\omega \exp(+i\omega t) \hat{x}(\omega) d\omega + \frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty} \exp(+i\omega t) \hat{x}(\omega) d\omega$$
(0.102)

$$= \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} (i\alpha\omega)^3 \exp(+i\omega t) \hat{x}(\omega) d\omega + \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} (i\alpha\omega)^2 \exp(+i\omega t) \hat{x}(\omega) d\omega \qquad (0.104)$$

$$+ 2 \cdot \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} (i\alpha\omega)^2 \exp(+i\omega t) \,\hat{x}(\omega) \,d\omega + 2 \cdot \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} i\alpha\omega \exp(+i\omega t) \,\hat{x}(\omega) \,d\omega$$
(0.105)

$$+\frac{1}{\sqrt{2\pi}}\int_{\mathbb{D}} i\alpha\omega \exp\left(+i\omega t\right)\hat{x}(\omega) d\omega + \frac{1}{\sqrt{2\pi}}\int_{\mathbb{D}} \exp\left(+i\omega t\right)\hat{x}(\omega) d\omega \qquad (0.106)$$

$$= \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \left(-i\alpha^3 \omega^2 - 3\alpha^2 \omega^2 + 3i\alpha\omega + 1 \right) \exp\left(+i\omega t \right) \hat{x}(\omega) d\omega \tag{0.107}$$

Setzt man dies in obige Gleichung ein und betrachtet auf beiden Seiten jeweils nur den Integranden so ergibt sich die algebraische Gleichung

$$\left(-i\alpha^3\omega^2 - 3\alpha^2\omega^2 + 3i\alpha\omega + 1\right)\hat{x}(\omega) = \hat{s}(\omega) \tag{0.108}$$

im Frequenzraum.

4.3. Bildet man den Quotienten $\hat{h}(\omega) = \frac{\hat{x}(\omega)}{\hat{s}(\omega)}$ so findet man für die Übertragungsfunktion

$$\hat{h}(\omega) = \frac{\hat{x}(\omega)}{\hat{s}(\omega)} = \frac{1}{-i\alpha^3\omega^2 - 3\alpha^2\omega^2 + 3i\alpha\omega + 1} = \frac{1}{1 - 3\alpha^2\omega^2 + i\alpha\omega(3 - \alpha^2\omega^2)} \quad (0.109)$$

Aufgabe 5 (Inverse Fourier-Transformierte) Berechnen Sie die inversen Fourier-Transformierten \check{f} der folgenden Funktionen $f \in \mathcal{S}(\mathbb{R}^n)$

5.1

$$f(k) = \frac{\exp\left(2ik\right)}{1 + k^2}$$

HINWEIS: Verwenden Sie die Translationseigenschaft der inversen Fourier-Transformierten analog zur Translationseigenschaft der Fourier-Transformierten aus Aufgabe 1.

5.2

$$f(k) = k \exp\left(-\frac{k^2}{2}\right)$$

HINWEIS: Versuchen Sie an einer geeigneten Stelle die Funktion f(k) als Ableitung darzustellen.

Lösung 5 (Inverse Fourier-Transformierte).

5.1. Gemäß dem Hinweis betrachten wir in Aufgabe 1 die Translationseigenschaft der Fourier-Transformierten. Identifiziert man $\hat{g}(k)$ aus Aufgabe 1.3 der gegebenen Funktion f(k), so ergibt sich

$$\hat{g}(k) = \exp(-ikx_0) \hat{f}(k) \quad \Leftrightarrow \quad f(k) = \exp(2ik) (1+k^2)^{-2}$$
 (0.110)

Durch Vergleich finden wir $x_0 = -2$ sowie $\hat{f} = (1 + k^2)^{-2}$. Damit reduziert sich die Aufgabe also auf die Berechnung der inversen Fourier-Transformierten von $(1 + k^2)^{-2}$. Aus Aufgabe 2.3 aber wissen wir, dass die Funktion $\exp(-|x|)$ die Fourier-Transformierte $\sqrt{\frac{2}{\pi}}(1+k^2)^{-2}$ besitzt woraus wir folgern können, dass die inverse Fourier-Transformierte von $(1+k^2)^{-2}$ durch

$$\left(\frac{1}{1+k^2}\right)^{\vee} = \sqrt{\frac{\pi}{2}} \exp\left(-|x|\right)$$
 (0.111)

gegeben ist. Dementsprechend können wir unter Ausnutzung der Translationseigenschaft schlussfolgern, dass die inverse Fourier-Transformierte der gegebenen Funktion f(k) durch

$$\check{f}(x) = \sqrt{\frac{2}{\pi}} \exp(-|x - 2|) \tag{0.112}$$

gegeben ist.

5.2. Setzt man die Funktionen f(k) in die Definition der inversen Fourier-Transformierten $\check{f}(x)$ ein, so ergibt sich

$$\check{f}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \exp\left(+\mathrm{i}kx\right) f(k) \, \mathrm{d}k \tag{0.113}$$

$$= \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \exp(+ikx) k \exp\left(-\frac{k^2}{2}\right) dk \qquad (0.114)$$

$$= \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \exp\left(-\frac{k^2}{2} + ikx\right) k \, dk \tag{0.115}$$

wobei wir die Exponentialfunktionen zusammengefasst haben. Stellt man an dieser Stelle entsprechend des Hinweises den Integranden gemäß

$$\exp\left(-\frac{k^2}{2} + ikx\right)k = \frac{1}{i}\frac{d}{dx}\exp\left(-\frac{k^2}{2} + ikx\right)$$
(0.116)

als Ableitung nach x dar so erhält man

$$\dots = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{D}} \frac{1}{\mathrm{i}} \frac{\mathrm{d}}{\mathrm{d}x} \exp\left(-\frac{k^2}{2} + \mathrm{i}kx\right) \,\mathrm{d}k \tag{0.117}$$

Um dieses Integral ausführen zu können, müssen wir abermals durch quadratische Ergänzung ein vollständiges Quadrat erzeugen

$$-\frac{k^2}{2} + ikx = -\frac{1}{2} \left(k^2 - 2ikx \right) \tag{0.118}$$

$$= -\frac{1}{2} \left(k^2 - 2ikx + (ix)^2 - (ix)^2 \right)$$
 (0.119)

$$= -\frac{1}{2}\left((k - ix)^2 + x^2\right) \tag{0.120}$$

$$= -\frac{1}{2}(k - ix)^2 - \frac{x^2}{2} \tag{0.121}$$

Setzt man dies ein und zieht die Ableitung nach x nach außen so verbleibt

$$\dots = \frac{1}{\sqrt{2\pi}} \frac{1}{\mathrm{i}} \frac{\mathrm{d}}{\mathrm{d}x} \int_{\mathbb{D}} \exp\left(-\frac{1}{2} (k - \mathrm{i}x)^2 - \frac{x^2}{2}\right) \,\mathrm{d}k \tag{0.122}$$

Mit der Variablentransformation $\tilde{k} := k - ix$ lässt sich das Integral leicht berechnen und wir finden schließlich

$$\dots = \frac{1}{\sqrt{2\pi}} \frac{1}{\mathrm{i}} \frac{\mathrm{d}}{\mathrm{d}x} \int_{\mathbb{R}} \exp\left(-\frac{1}{2}\tilde{k}^2 - \frac{x^2}{2}\right) \,\mathrm{d}\tilde{k}$$
 (0.123)

$$= \frac{1}{\sqrt{2\pi}} \frac{1}{\mathrm{i}} \frac{\mathrm{d}}{\mathrm{d}x} \left(\exp\left(-\frac{x^2}{2}\right) \int_{\mathbb{R}} \exp\left(-\frac{1}{2}\tilde{k}^2\right) \,\mathrm{d}\tilde{k} \right) \tag{0.124}$$

$$= \frac{1}{\sqrt{2\pi}} \frac{1}{\mathrm{i}} \frac{\mathrm{d}}{\mathrm{d}x} \left(\exp\left(-\frac{x^2}{2}\right) \sqrt{2\pi}\right) \tag{0.125}$$

$$= +ix \exp\left(-\frac{x^2}{2}\right) \tag{0.126}$$

Aufgabe 6 (Eigenschaften der Faltung) Beweisen Sie die folgenden in der Vorlesung besprochenen Eigenschaften der Faltung für Funktionen $f, g, h \in L^1(\mathbb{R}^n)$

6.1 Kommutativität

$$f*g=g*f$$

6.2 Assoziativität

$$(f * g) * h = f * (g * h)$$

6.3 Distributivität

$$f*(g+h) = f*g + f*h$$

Lösung 6 (Eigenschaften der Faltung).

6.1.

Der Beweis der Kommutativität der Faltung ergibt sich mit Variablentransformation $\tilde{y} := x - y$ unter Verwendung des Transformationssatzes aus deren Definition

$$(f * g)(x) = \int_{\mathbb{R}^n} f(x - y)g(y) d^n y = \int_{\mathbb{R}^n} f(\tilde{y})g(x - \tilde{y}) \left| \det \left(\frac{\partial \tilde{y}}{\partial y} \right) \right| d^n \tilde{y}$$
 (0.127)

$$= \int_{\mathbb{R}^n} f(\tilde{y})g(x - \tilde{y}) |\det(-\mathbb{1}_{n \times n})| d^n \tilde{y}$$
(0.128)

$$= \int_{\mathbb{R}^n} f(\tilde{y})g(x - \tilde{y}) \left| -1 \right| d^n \tilde{y} = (g * f)(x)$$

$$(0.129)$$

6.2.

Auch zum Beweis der Assoziativität der Faltung starten wir ausgehend von der Definition der Faltung

$$((f * g) * h) (x) = \int_{\mathbb{R}^n} (f * g) (x - y) h(y) d^n y$$
(0.130)

$$= \int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} f((x-y) - z) g(z) \, \mathrm{d}^n z \right) h(y) \, \mathrm{d}^n y \tag{0.131}$$

Vergleicht dies mit dem Ausdruck für f * (g * h)

$$(f * (g * h)) (x) = \int_{\mathbb{R}^n} f(x - \tilde{y}) (g * h) (\tilde{y}) d^n \tilde{y}$$

$$(0.132)$$

$$= \int_{\mathbb{R}^n} f(x - \tilde{y}) \left(\int_{\mathbb{R}^n} g(\tilde{y} - \tilde{z}) h(\tilde{z}) d^n \tilde{z} \right) d^n \tilde{y}$$
 (0.133)

so bietet es sich an, zunächst die Rolle der Integrationsvariablen \tilde{y} und \tilde{z} zu vertauschen

$$\dots = \int_{\mathbb{R}^n} f(x - \tilde{z}) \left(\int_{\mathbb{R}^n} g(\tilde{z} - \tilde{y}) h(\tilde{y}) d^n \tilde{y} \right) d^n \tilde{z}$$
 (0.134)

Nachdem mit g und h auch die Faltung g * h wieder eine $L^1(\mathbb{R}^n)$ -Funktion ist, konvergieren die Integrale und wir dürfen diese vertauschen. Damit ergibt sich

$$\dots = \int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} f(x - \tilde{z}) g(\tilde{z} - \tilde{y}) \, \mathrm{d}^n \tilde{z} \right) h(\tilde{y}) \, \mathrm{d}^n \tilde{y}$$
 (0.135)

Definieren wir nun simultan $\tilde{y} = y$ und $\tilde{z} := y + z$ und verwendet dabei $d^n \tilde{y} = d^n y$ sowie $d^n \tilde{z} = d^n z$ so ergibt sich

$$\dots = \int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} f(x - (y+z))g(z) \, \mathrm{d}^n z \right) h(y) \, \mathrm{d}^n y \tag{0.136}$$

$$= \int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} f((x-y) - z)g(z) \, \mathrm{d}^n z \right) h(y) \, \mathrm{d}^n y \tag{0.137}$$

$$= \int_{\mathbb{R}^n} (f * g) (x - y) h(y) d^n y$$
(0.138)

$$= ((f * g) * h) (x) \tag{0.139}$$

6.3. Trivial.

Aufgabe 7 (Faltung) Wir betrachten durch

$$s(x) = \frac{\pi - x}{2}$$

definierte, 2π -periodische Sägezahnfunktion wobei $x \in [0, 2\pi)$.

- **7.1** Zeigen Sie, dass die Faltung (f * f)(x) einer T-periodischen Funktion $f \in L^1(\mathbb{R})$ wiederum T-periodisch ist.
- 7.2 Berechnen Sie die durch

$$(s*s)(x) = \frac{1}{2\pi} \int_0^{2\pi} s(x-y)s(y) \, dy$$

definierte periodische Faltung für $x \in \mathbb{R}$.

Lösung 7.

7.1. Um zu zeigen, dass die Faltung (f * f)(x) einer periodischen Funktion f mit der Periode T wiederum T-periodisch ist, setzen wir die Funktion f in die Definition der Faltung ein

$$(f * f)(x) = \int_{\mathbb{R}} f(x - y)f(y) \, dy = \int_{x_0}^{x_0 + T} f(x - y)f(y) \, dy \qquad (0.140)$$

wobei wir ausgenutzt haben, dass die Funktion T-periodisch ist. Dies ist gleichbedeutend damit, dass die Funktion f nur im Intervall $[x_0, x_0 + T]$ nicht-verschwindende Werte annimmt. Ist (f * f)(x) periodisch, so muss gelten

$$(f * f)(x + T) \stackrel{!}{=} (f * f)(x)$$
 (0.141)

Berechnen wir (f * f)(x + T) mit dem obigen Faltungsintegral so finden wir

$$(f * f)(x + T) = \int_{x_0}^{x_0 + T} f(x + T - y)f(y) dy$$
 (0.142)

Nachdem aber die Funktion f selbst T-periodisch ist, vereinfacht sich dieser Ausdruck und wir finden das erwartete Ergebnis

$$\cdots = \int_{x_0}^{x_0+T} f(x-y)f(y) \, dy = (f * f)(x)$$
 (0.143)

7.2. Analog zur ersten Teilaufgabe berechnen wir das Faltungsintegral wiederum nur auf dem Intervall $[x_0, x_0+2\pi]$ wobei wir ohne Beschränkung der Allgemeinheit $x_0=0$ setzen können. Es ergibt sich laut Definition

$$(s*s)(x) = \int_{\mathbb{R}} s(x-y)s(y) dy$$
 (0.144)

An dieser Stelle müssen wir kurz pausieren und uns überlegen, ob wir nun einfach die gegebene Funktion s einsetzen dürfen und den Integrationsbereich auf das Intervall $[0, 2\pi]$ beschränken können. Betrachten wir im Integranden den Faktor s(x-y) so ist unschwer zu erkennen, dass dieser nur für $x-y\in [0,2\pi)$ definiert ist. Wählt man beispielsweise $x=\pi$ so ist dieser Faktor nicht von unserer Definition abgedeckt. Nachdem die Funktion s aber als 2π -periodisch angenommen wird, lautet die Funktionsgleichung für s auf dem Intervall $[-2\pi,0)$

$$s(x) = -\frac{x+\pi}{2} \tag{0.145}$$

Damit können wir das Faltungsintegral für $x \in [0, 2\pi)$ wie folgt berechnen

$$(s*s)(x) = \int_{\mathbb{R}} s(x-y)s(y) dy$$

$$(0.146)$$

$$= \int_{0}^{x} s(x-y)s(y) \, dy + \int_{x}^{2\pi} s(x-y)s(y) \, dy$$
 (0.147)

$$= \frac{1}{4} \left(\int_{0}^{x} (\pi - (x - y)) (\pi - y) dy + \int_{x}^{2\pi} (-(x - y + \pi)) (\pi - y) dy \right)$$
(0.148)

wobei wir für den Faktor s(x-y) im zweiten Integral die Funktionsgleichung für s auf dem Intervall $[-2\pi,0)$ eingesetzt haben. Nach einigem Rechnen ergibt sich

$$\dots = -\pi x^2 + 2\pi^2 x - \frac{2}{3}\pi^3 = -\pi \left(x^2 - 2\pi x + \frac{2}{3}\pi^2\right) \tag{0.149}$$

Wie sich leicht überprüfen lässt, ist diese Funktion tatsächlich wiederum 2π -periodisch

$$(s*s)(x_0 + 2\pi) = -\pi \left((x_0 + 2\pi)^2 - 2\pi (x_0 + 2\pi) + \frac{2}{3}\pi^2 \right)$$
 (0.150)

$$= -\pi \left(x_0^2 + 4\pi x_0 + 4\pi^2 - 2\pi x_0 - 4\pi^2 + \frac{2}{3}\pi^2 \right) \tag{0.151}$$

$$= -\pi \left(x_0^2 + 2\pi x_0 + \frac{2}{3}\pi^2 \right) \tag{0.152}$$