Ferienkurs Analysis 1

$\mathop{\mathrm{WS}}_{\cdot\cdot\cdot}\ 2012/13$

2. Übungsblatt

(Bertram Klein)

Dienstag, 12. März 2013

Aufgabe 1

Sind die folgenden Aussagen richtig oder falsch?

- a) Jede konvergente Folge hat einen Grenzwert.
- b) Der Grenzwert einer Folge kann sich ändern, wenn man endlich viele Folgenglieder ändert.
- c) Jede Nullfolge ist eine konvergente Folge.
- d) Jede konvergente Folge ist beschränkt.
- e) Seinen (a_n) , (b_n) zwei Folgen. Dann gilt $\lim_{n\to\infty}(a_n+b_n)=\lim_{n\to\infty}(a_n)+\lim_{n\to\infty}(b_n)$.
- f) Seinen (a_n) , (b_n) zwei divergente Folgen. Dann ist auch $(a_n + b_n)$ divergent.
- g) Es gibt Cauchyfolgen in \mathbb{R} , die nicht konvergieren.
- h) Jede Folge hat mindestens einen Häufungspunkt.
- i) Jede beschränkte, reelle Folge hat mindestens einen Häufungspunkt.
- j) Jede konvergente Folge hat mindestens einen Häufungspunkt.
- k) Der Wert einer Reihe ändert sich nicht, wenn man endlich viele Summanden abändert.
- l) Wenn $\sum_{n=0}^{\infty} a_n$ konvergiert, dann ist (a_n) eine Cauchyfolge.
- m) Wenn (a_n) eine Cauchyfolge ist, dann konvergiert $\sum_{n=0}^{\infty} a_n$.
- n) Wenn (a_n) eine Nullfolge ist, dann konvergiert $\sum_{n=0}^{\infty} a_n$.
- o) Wenn $\sum_{n=0}^{\infty} a_n$ und $\sum_{n=0}^{\infty} b_n$ konvergente Reihen sind, dann ist $\sum_{n=0}^{\infty} a_n b_n = \sum_{n=0}^{\infty} a_n \cdot \sum_{n=0}^{\infty} b_n$

Aufgabe 2

Geben Sie Beispiele an für:

- a) eine beschränkte Folge, die nicht konvergiert.
- b) eine unbeschränkte Folge mit einer konvergenten Teilfolge.
- c) eine konvergente Reihe, die nicht absolut konvergiert.
- d) eine divergente Reihe $\sum_n a_n$, wobei a_n eine Nullfolge ist.
- e) eine Reihe, die konvergiert, aber nicht das Quotientenkriterium erfüllt.

Aufgabe 3

Beweisen Sie die folgende Aussage: Jede konvergente Folge ist beschränkt.

Aufgabe 4

Untersuchen Sie die folgenden Reihen auf absolute Konvergenz.

a)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n-1}}$$

b)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n} \text{ mit } x \in \mathbb{R}$$

c)
$$\sum_{n=1}^{\infty} \frac{n}{4n^2 - 3}$$

$$d) \sum_{n=1}^{\infty} \frac{\sin(\sqrt{n})}{n^{5/2}}$$

$$e) \sum_{n=1}^{\infty} \frac{1}{n}$$

f)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$

Aufgabe 5

Bestimmen Sie die Werte der folgenden Reihen.

a)
$$\sum_{n=1}^{\infty} \frac{1}{4n^2 - 1}$$

b)
$$\sum_{n=1}^{\infty} \frac{2^{n+1}}{n!}$$

c)
$$\sum_{n=1}^{\infty} \frac{1}{(3n+1)(3n-2)}$$

d)
$$\sum_{n=1}^{\infty} 3^{n/2} 2^{1-n}$$

Aufgabe 6

Bestimmen Sie den Konvergenzradius der folgenden Reihen.

2

a)
$$\sum_{n=1}^{\infty} \frac{2^n}{n} z^n$$

b)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} z^n$$

c)
$$\sum_{n=1}^{\infty} 3^n \sqrt{(3n-2)2^n} z^n$$

d)
$$\sum_{n=1}^{\infty} \frac{(2+(-1)^n)^n}{n} z^n$$