Ferienkurs Theoretische Mechanik Sommer 2010

Probeklausur

1 Fragen

1. Kann man die Bewegungsgleichung des gedämpften Oszillators

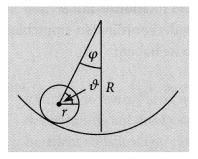
$$\ddot{x} + 2\lambda \dot{x} + \omega_0^2 x = 0$$

mit Auslenkung x(t), Dämpfungskonstanten λ und Frequenz ω_0 als Lagragegleichung zweiter Art aus L = T - V ableiten? Begründen Sie kurz.

- 2. In einem Auto, das mit konstanter Geschwindigkeit fährt, hängt ein Heliumballon unter der Decke. Wie verhält sich der Heliumballon bei einer plötzlichen Bremsung?
- 3. Ein hohler Würfel steht fest auf einer horizontalen Tischplatte. In dem Würfel bewegt sich ein Massenpunkt, der an den Wänden elastisch reflektiert wird. Nennen Sie drei unabhängige Erhaltungsgrößen.
- 4. Was ist eine zyklische Koordinate?
- 5. Wie schafft es eine Schlittschuhläuferin in einer Pirouette, sich immer schneller zu drehen?

2 Zylinder auf Zylindermantel

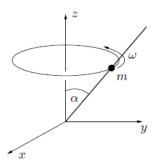
Auf der Innenfläche eines Zylindermantels (Radius R) rolle ein Zylinder (Radius r, Massendichte ρ =const).



- 1. Wie lautet die Lagrangefunktion des Systems?
- 2. Formulieren Sie die Lagrangeschen Bewegungsgleichungen.
- 3. Lösen Sie die Bewegungsgleichung für kleine Ausschläge φ

3 Perle

Betrachten Sie einen geraden (masselosen, unendlichen) Draht, der mit konstanter Winkelgeschwindigkeit ω um die z-Achse rotiert und mit dieser einen konstanten Winkel α bildet. Auf dem Draht gleitet reibungsfrei eine Perle mit Masse m, auf die die Gewichtskraft in negativer z-Richtung wirkt.



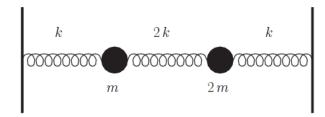
- 1. Geben Sie die Zwangsbedingungen an.
- 2. Stellen Sie eine Lagrange-Funktion für die Perle auf und geben Sie die entsprechende Lagrange-Gleichung zweiter Art an. Lösen Sie diese für $r(t) \ge 0$ mit den Anfangsbedingungen $r(0) = r_0$ und $\dot{r}_0(0) = v_0$.
- 3. Bestimmen Sie eine Hamilton-Funktion der Perle. Ist die Hamilton-Funktion gleich der Gesamtenergie E? Ist die Hamilton-Funktion erhalten?

4 Kugelschale

Betrachten Sie eine homogene Kugelschale mit Massendichte ρ , innerem Radius r und äußerem Radius R. Berechnen Sie die Hauptträgheitsmomente der Kugelschale bezüglich eines körperfesten Bezugssystems mit Ursprung im Mittelpunkt der Kugelschale.

5 Gekoppelte Massen

Betrachten Sie zwei Massenpunkte mit Massen m und 2m, die jeweils mit einer Feder der Federkonstanten k an einer Wand befestigt sind und mit einer Feder der Federkonstanten 2k miteinander verbunden sind.



- 1. Stellen Sie eine Lagrange-Funktion für die Bewegung der Massenpunkte auf.
- 2. Bestimmen Sie die Eigenfrequenzen der Schwingungen des Systems sowie die zugehörigen Eigenvektoren.