1 Aufgabe. Thema Polynome

Beweisen Sie: ein Polynom $f: C \to C$ nimmt genau dann für alle $x \in X$ reelle Werte an, wenn seine Koeffizienten reell sind.

2 Aufgaben zum Thema Stetigkeit

- 1) Zu $a,b,c\in R$ mit a>0 bestimme man α,β so, dass $\lim_{x\to\infty}\left(\sqrt{ax^2+bx+c}-\alpha x-\beta\right)=0$
- 2) Jedes reelle Polynom ungeraden Grades hat eine reelle Nullstelle.
- 3) Die Funktion $f: [0;1] \to R$ sei stetig, und es sei f(0) = f(1). Dann gibt es ein $c \in [0,\frac{1}{2}]$ mit $f(c) = f(c+\frac{1}{2})$.
- 4) Man bestimme die folgenden Grenzwerte:
 - $1. \lim_{x \to 0} x \cot x$
 - $2. \lim_{x \to 0} \frac{\cos x 1}{\sin^2 x}$
 - $3. \lim_{x \to \frac{\pi}{2}} \left(\tan x \frac{1}{\cos x} \right)$
 - $4. \lim_{x \to 0} \left(\frac{1}{e^x 1} \frac{1}{x} \right)$
- 5) Man bestimme die stetige Fortsetzung von der Funktion $f(x) = \frac{x}{e^x 1}$.
- 6*) Man zeige, dass $f(x) = \sqrt{|x|}$ überall stetig ist. Hinweis: Machen Sie eine Fallunterscheidung. Für den Fall $x_0 < \epsilon \sqrt{x_0}$ überlegen Sie sich, was δ ist.
- 7)* Gegeben ist die Funktion $f(x)=\frac{x}{x-1}, x\neq 1$
 - a) Für $x_0 \neq 1$ ermittle man $\delta(\epsilon, x_0)$, so dass für alle x mit $|x x_0| < \delta(\epsilon, x_0)$ gilt $|f(x) f(x_0)| < \epsilon$
 - b) Man berechne $\delta(\epsilon, x_0)$ für $\epsilon = 0.01$ und $x_0 = 2, x_0 = 1, 1, x_0 = 0.999$.

Hinweis: Für die Abschätzung $|f(x) - f(x_0)|$ benutzen Sie folgende Identität: $||a| - |b|| \le |a + b| \le |a| + |b|$. Leiten Sie mit dieser Abschätzung den Wert von δ ab.

3 Aufgaben zum Thema Differenzierbarkeit

- 1) Man berechne die Ableitung nach x von:
 - a) $f(x) = e^{ax} \sin(\omega x + a)$,
 - b) $f(x) = \cos(\sin(\cos(x^2)))$.
- 2) Man berechne die Ableitung nach x, dort wo die Funktion differenzierbar ist:
 - a) f(x) = |x|
 - b) $f(x) = x\sqrt{|x|}$.
- 3) Für welche $a \in R_+$ ist die Funktion $f: R \to R$ mit $f(x): = |x|^a sin \frac{1}{x}$ für $x \neq 0$ und f(0): = 0 im Nullpunkt differenzierbar? Gegebenfalls berechne man die Ableitung.

1

- 4) Klausuraufgabe. Gegeben ist die Funktion $f(x) = 4|x-1|^3 + |x|^3, -\infty < x < \infty$.
 - a) Man zeige: f(x) > 0 für alle x. Welchen Wert strebt f(x) zu, falls $x \to \pm \infty$?
 - b) Man berechne f'(x)
 - c) Man zeige: $f''(x) = \begin{cases} -30x + 24 & , x \le 0 \\ -18x + 24 & , 0 < x \le 1 \\ 30x 24 & , x > 1 \end{cases}$
 - d) Man zeige, dass f(x) für alle x zweimal differenzierbar ist.