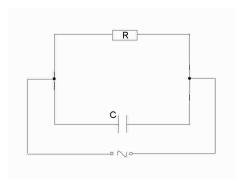
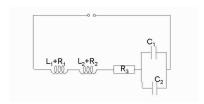

Übungsaufgaben Zeitlich veränderliche Felder und Wechselstrom

Martina Stadlmeier


09.09.2009

- 1. Ein Elektromagnet wird durch einen Strom von 1 A erregt, der durch 10^3 Windungen der Feldspule mit einer Fläche von $100~\rm cm^2$, der Länge $0,4~\rm m$ und einem Widerstand von $5~\Omega$ fließt. Das Magnetfeld B im Eisenkern ist $1~\rm T$.
 - a) Berechne die an den Enden der Spule auftretende Induktionsspannung, wenn der Strom in einer Zeit $\Delta t=1$ ms abgeschaltet wird!
 - b) Vergleiche I(t < 0) mit I(t = 0)!
- 2. Die beiden Schienen eines Eisenbahngleises mit der Spurweite $l=1435\,\mathrm{mm}$ seien voneinander isoliert und mit einem Spannungsmesser verbunden. Welche Spannung U_{ind} zeigt das Messgerät an, wenn ein Zug mit der Geschwindigkeit $v=100\frac{km}{h}$ über die Strecke fährt? (Die Vertikalkomponente der magn. Flussdichte des Erdmagnetfeldes beträgt $45\,\mu\mathrm{T}$)
- 3. Ein Stab der Länge l rotiert mit der Winkelgeschwindigkeit ω um eines seiner Enden in einer Ebene senkrecht zum Magnetfeld B. Welche Spannung U_{ind} wird zwischen den Stabenden induziert?
- 4. Gegeben ist das folgende Leitersystem (a=100 cm, b=10 cm, d=2,0 cm):



- a) Durch den Leiter L_2 fließt ein Strom der Stärke $I_2=10\,\mathrm{A}$. Wie groß ist der magnetische Fluss durch die Rechtecksfläche von L_1 ?
- b) Durch L_2 fließt sinusförmiger Wechselstrom ($I_{2eff} = 10 \text{ A}, f = 50 \text{ Hz}$). Wie groß ist die induzierte Spannung U_{1eff} im Leiter L_1 ?
- c) Der Leiter L_1 hat den Widerstand 0,10 Ω . Wie groß ist I_{1eff} ?
- d) Welche Leistung P wird in L_1 in Wärme umgesetzt? e) Woher stammt die verbrauchte Energie?

- 5. Ein Kondensator, eine Spule und ein Ohmscher Widerstand sind in Reihe geschaltet.
 - a) Berechne den Scheinwiderstand Z und den Phasenwinkel φ für R=100 Ω , C=2,00 μ F, L=10,0 mH und f=1,00 kHz!
 - b) Nun sei C variabel und R=0. An der Schaltung liege die Spannung U_{eff} in Reihe mit R, C, L. Gibt es ein C^* , sodass $U_{Leff}=2U_{eff}$? Berechne C^* !
- 6. Bestimme für folgende Schaltung (R=3,0 $\Omega,$ C= $\mu\mathrm{F},~U_{eff}=10\,\mathrm{V},$ f=500 Hz)

- a) den Blindwiderstand X_C
- b) den Scheinwiderstand Z c) die Gesamtstromstärke I_{eff}
- d) die Teilstromstärken I_{Ceff} und I_{Reff}
- e) den Phasenwinkel φ
- f) die Scheinleistung P_S
- g) die je Sekunde am Ohmschen Widerstand abgegebene Wärmemenge Q
- h) die parallelzuschaltende Induktivität L, die die Phasenverschiebung aufhebt!
- 7. Berechne für folgende Schaltung ($L_1=40 \text{ mH}, L_2=5,0 \text{ mH}, R_1=20 \Omega$, $R_2=10 \Omega, R_3=60 \Omega, C_1=5,0 \mu\text{F}, C_2=5,0 \mu\text{F}, U_{eff}=250 \text{ V}, f=1,0 \text{ kHz}$)

- a) die Stromstärke I_{eff} , die durch die gesamte Schaltung fließt!
- b) Wie groß ist die Wirkleistung P?
- c) Welche Wärmemenge ${\cal Q}$ wird in einer Minute vom Stromkreis an die Umgebung abgegeben?
- 8. Ein Hochpass und ein Tiefpass bestehen jeweils aus der Serienschaltung eines Kondensators C, eines Widerstandes R und der Spannungsquelle U_0 . Beim Hochpass wird die Ausgangsspannung U_{eff} über dem Widerstand abgegriffen, beim Tiefpass über dem Kondensator.
 - a) Berechne jeweils das Verhältnis $\frac{U_{eff}}{U_{0eff}}!$
 - b) Wie wirken sich sehr hohe bzw. sehr niedrige Frequenzen auf die Ausgangsspannung aus?
- 9. Betrachte eine Reihenschaltung von Widerstand, Kondensator und Spule und einer Spannungsquelle $U=U_0e^{i\omega t}$. a) Stelle die DGL für die Ladung Q

auf!

b) Zeige dass für die Resonanzfrequenz gilt:

$$\omega_{res} = \sqrt{\frac{1}{LC} - \frac{R^2}{2L^2}}$$

- c) Bestimme die Frequenz ω_{max} , bei der die im Widerstand dissipierte Energie maximal wird!
- 10. Eine Spule mit L=2,2 H wird zum Zeitpunkt t=0 über einen Widerstand von 470 Ω mit einer Batterie U=9 V verbunden.
 - a) Stelle die DGL für den Stromfluss in der Spule auf! Löse die DGL mit den korrekten Anfangsbedingungen!
 - b) Skizziere den zeitlichen Verlauf von Spannung und Stromstärke an/durch die Spule!
 - c) Wieviel Energie wird in Wärme umgewandelt bis zu dem Zeitpunkt, an dem die Stromstärke 90 Prozent ihres Maximalwertes erreicht hat?