Übungsblatt Ferienkurs Analysis II

15.09.2009

Differentialgleichungen

Aufgabe 1)
Gegeben sei die lineare Differentialgleichung: $y^{(4)} - 4y''' + 7y'' - 6y' + 2y = 0$
a) Welche Dimension hat diese DGL?
$\boxed{012345}$
b) Welche Funktionen lösen diese DGL?
c) Wie lautet die Menge aller Lösungen der Gleichung: $y^{(4)} - 4y''' + 7y'' - 6y' + 2y = 2$?
Aufgabe 2)
Reduzieren Sie die Differentialgleichung $\ddot{x}(t) - \dot{x}(t) - 6x(t) = 0$ auf eine DGL 1. Ordnung und lösen Sie diese mit Hilfe des Matrixexponentials zu den Anfangswerten $x(0) = 5, \dot{x}(0) = 5$. Überprüfen Sie die Richtigkeit der Ergebnisse.
Aufgabe 3)
a) Geben Sie ein Fundamentalsystem zur Differentialgleichung $\frac{1}{16}\ddot{x}(t) - \frac{1}{4}\dot{x}(t) + \frac{1}{2}x(t) = b \text{ für } b = 0 \text{ an.}$

b) Lösen Sie die inhomogene DGL für $b = \frac{1}{8}$ zu den Anfangswerten $x(0) = \frac{1}{2}$, $\dot{x}(0) = \frac{1}{2}$

Aufgabe 4)

Gegeben ist das lineare Differentialgleichungssystem

$$\dot{x}_1 = x_1 + x_2 + 3x_3
\dot{x}_2 = x_2 - 2x_3
\dot{x}_3 = x_3$$

a) Geben Sie die Funktionalmatrix A an.

$$A =$$

b) Lösen Sie das DGL-System mit Hilfe des Matrixexponentials zum Anfangswert

$$\boldsymbol{x}(0,0,0) = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

Aufgabe 5)

Geben Sie alle Lösungen zu folgenden Differentialgleichungen an:

a)
$$x(t)x'(t) = 12t^2$$

b)
$$\left(\frac{y'(x)}{y(x)}\right)^2 = 4\left(\frac{x}{y(x)}\right)^2 - 4x^2$$

c)
$$x^{-x} = \frac{\ln(x)}{y'(x)} + \frac{1}{y'(x)}$$

Übungsaufgaben zur Differentialrechnung

FÜR DIENSTAG, 15.9.09 VON CARLA ZENSEN

Aufgabe 1: Definitionen

- a) Sei $f: \mathbb{R}^3 \to \mathbb{R}$, $f \in C(\mathbb{R}^3)$ Wie ist $\frac{\partial}{\partial x_1} f(x)$ definiert? Wie ist die Funktion $\frac{\partial}{\partial x_1} f$ definiert? Was ist der Unterschied?
- b) $f: \mathbb{R}^2 \times \mathbb{R} \setminus \{0\} \to \mathbb{R}$, $f(x, y, z) = \frac{x^y}{z}$ a = (1, 2, 3)Berechne
 - $\partial_x f(x,y,z)$, $\partial_y f(x,y,z)$, $\partial_z f(x,y,z)$, $\partial_y \partial_x f(x,y,z)$, $\partial_x \partial_y f(x,y,z)$
 - \bullet den Gradienten $\nabla f(a)$ im Punkt a

Ist die Funktion stetig auf \mathbb{R}^3 ? Ist sie dort überall differenzierbar?

- c) $f: D \to W$, $f(x,y) = \cos \frac{\ln xy}{y}$ Bestimme die Definitionsmenge D und Wertemenge W dieser Funktion und berechne für diese Punkte die ersten partiellen Ableitungen, den Gradienten und die Richtungsableitung in Richtung (1,-2)!
- d) $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x_1, x_2) = (x + y, \ln xy)$ Berechne die Ableitung von f im Punkt (x_0, y_0) !

Aufgabe 2: Gradient und Höhenlinien

Gegeben ist die Funktion

$$f: \mathbb{R}^2 \to \mathbb{R}, \qquad f(x,y) = x \cdot y$$

- a) Beschreibe die durch f gegebene Fläche durch Skizzieren der Höhenlinien!
- b) Berechne den Gradienten von f und skizziere auch diesen.
- c) Bestimme die Tangente an die Höhenlinie im Punkt (x_0, y_0) und zeige, dass diese immer senkrecht zum Gradienten in diesem Punkt steht.
- d) Im Punkt $(x_0, y_0, f(x_0, y_0))$ wird ein sehr langsam kriechendes Öltröpfchen auf die Fläche gesetzt, wobei seine Anfangsgeschwindigkeit $v_0 = 0$ ist. Welche Bahnkurve beschreibt es bei seiner kriechenden Fortbewegung?

Hinweis: Die Bewegung wird näherungsweise durch folgende DGL beschrieben:

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = -\alpha \nabla f(x, y)$$

Löse die DGL mit $x(0) = x_0$ und $y(0) = y_0$ und finde die entsprechende Bahnkurve y(x) durch Elimierung der Zeit aus der Lösung (x(t),y(t)) der DGL

Aufgabe 3: Partielle Differenzierbarkeit

Ist $g: \mathbb{R}^2 \to \mathbb{R}$ stetig? Ist diese Funktion partiell differenzierbar?

$$f(x,y) = \begin{cases} (x^2 + y^2) \sin \frac{1}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

Aufgabe 4: Differenzierbarkeit

- a) Sei $U \subset \mathbb{R}^n$ offen, und sei $f: U \to \mathbb{R}^m$. Welche Aussagen sind richtig in einem Punkt $x_0 \in U$?
 - f ist total differenzierbar in x_0 . \Rightarrow f ist stetig in x_0
 - \Box f ist partiell differenzierbar in $x_0 \Rightarrow$ f ist stetig in x_0
 - f ist partiell differenzierbar in $x_0 \Rightarrow$ f ist total differenzierbar in x_0
 - f ist stetig partiell differenzierbar in $x_0 \Rightarrow f$ ist stetig in x_0
 - f ist total differenzierbar in $x_0 \Rightarrow$ f ist partiell differenzierbar in x_0
 - Richtungsabl. für beliebige Richtung ex. in $x_0 \Rightarrow f$ ist stetig partiell differenzierbar

b)
$$f(x) = \begin{cases} \sqrt{xy} \frac{y^2}{x^2 + y^2} & \text{für } x \neq 0 \\ 0 & \text{für } x = 0 \end{cases}$$

• Man berechne die Richtungsableitung im Punkt a = (0,0) und für die Richtung $v = (v_1, v_2)$ mit |v| = 1

$$D_v f(a) = \lim_{h \to 0} \frac{f(a+hv) - f(a)}{h} =$$

• Leite aus der Existenz der Richtungsableitungen die partiellen Ableitungen im Ursprung her (Begründung verlangt!) und gib den Gradienten an!

$$\nabla f(a) =$$

• Zeige, dass f im Ursprung nicht total differenzierbar ist!

Benutze die Definition der totalen Ableitung $\lim_{y\to 0} \frac{|f(x+y)-f(x)-Df(x)y|}{|y|} = 0$ und wähle y=(h,h)

• Ist f im Ursprung also unstetig?

 $_{\square}$ Ja $_{\square}$ Nein $_{\square}$ Kann man ohne weitere Rechnung nicht sagen

Aufgabe 5: Summenregel

Zeige die Summenregel D(f+g)(x) = Df(x) + Dg(x) und vergiss nicht, die notwendigen Vorraussetzungen zu treffen! Hinweis: Definition der totalen Ableitung benutzen!

Aufgabe 6: Kettenregel

$$f: \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \mapsto \begin{pmatrix} x_1 x_2 \\ \frac{x_2}{x_3} \end{pmatrix} \qquad g: \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \mapsto \begin{pmatrix} 1 \\ y_1 + y_2 \\ \sin y_1 \\ \ln y_2 \end{pmatrix}$$

- a) Berechne Df(x), Dg(x), $D(g \circ f)(x)$ allgemein
- b) Berechne $D(g \circ f)(x)$ im Punkt $(\frac{\pi}{e}, e, 1)$