MICHAEL SCHRAPP ÜBUNGSBLATT 2 Analysis II

Repetitorium Analysis II für Physiker

Aufgabe 1

Betrachten Sie das Ellipsoid $M = \{(x, y, z) \in \mathbb{R}; x^2 + y^2 + 2z^2 = 2\}$ und berechnen Sie Maximum und Minimum für die Restriktion f_M der auf \mathbb{R}^3 durch f(x, y, z) = x - y + z definierten Funktion f.

Aufgabe 2

Bestimmen Sie die lokalen Maxima und Minima der Funktion $f(x,y)=x^2-xy+y^2$ auf der abgeschlossenen Einheitskreisscheibe $D=\{(x,y)\in\mathbb{R}^2;x^2+y^2\leq 1\}$. Hinweis: Betrachten Sie zunächst das Innere und dann den Rand von D.

Aufgabe 3

Sei $f:[0,\pi]\to\mathbb{R}, f(t)=3\sin t$. Man berechne die Luge des Graphen von $f(graph(f)\subset\mathbb{R}^2)$, wenn R^2 mit der Norm $\|\cdot\|_1$ versehen wird.

Aufgabe 4

Es soll die Kurve $\gamma(t) = (\cos t, \cos t \sin t), -\pi \le t \le \pi$ betrachtet werden.

- a) Untersuchen Sie γ auf Doppelpunkte und auf singuläre Punkte. Bestimmen Sie den Schnittwinkel von γ mit sich selbst in den Doppelpunkten.
- b) Zeigen Sie, dass das Bild der Kurve übereinstimmt mit der Nullstellenmenge der durch die Gleichung $f(x,y) = x^2(1-x^2) y^2$ gegebenen Funktion $f: \mathbb{R}^2 \to \mathbb{R}$.
- c) Skizzieren Sie den Verlauf von γ in der Ebene.

Aufgabe 5

Die Bahnkurve eines Punktes auf dem Rand eines Kreises, der in der Ebene \mathbb{R}^2 im Inneren eines festen Kreises von vierfachem Radius abrollt, wird eine *Astroide* genannt. Eine Parametrisierung lautet:

$$\gamma(\varphi) = (\cos^3 \varphi, \sin^3 \varphi)$$

- a) Bestimmen Sie die singulären Punkte
- b) Berechnen Sie die Bogenlänge der Kurve für einen Umlauf.

Aufgabe 6

Seien a, p, q, r > 0 strikt positive, feste Zahlen. Bestimmen Sie die drei Summanden x, y, z > 0in der Zerlegung von a = x + y + z so, dass $x^p y^q z^r$ maximal wird.

Aufgabe 7

Zeigen Sie, dass $f(x, y, z) = z^3 + 4z - x^2 + xy^2 + 8y - 7 = 0$ in jedem Punkt $(x, y) \in \mathbb{R}^2$ lokal als Graph der Funktion z = g(x, y) darstellen lässt. Berechnen Sie die Ableitung von g.

Aufgabe 8

Zu Zahlen a > b > 0 wird die folgende Punktmenge in der Ebene betrachtet:

$$E = \left\{ (x, y) \in \mathbb{R}^2; \ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \right\}$$

Begründen Sie, dass E das Bild der durch $\gamma(t)=(a\cos t,\ b\sin t),\ t\in\mathbb{R}$ definierten 2π -periodischen, stetig differenzierbaren regulären Kurve $\gamma:\mathbb{R}\to\mathbb{R}^2$ ist.

Zeigen Sie, dass die Krümmung einer Kurve in kartesischen Koordinaten $\begin{pmatrix} x \\ y(x) \end{pmatrix}$ gegeben ist durch:

$$\kappa(t) = \frac{y''(x)}{(1 + y'(x)^2)^{3/2}}$$

Und berechnen Sie im Falle a=b die Krümmung der Kurve in Polar- Koordinaten.

Aufgabe 9

Zeigen Sie, dass sich $f(x,y,z) = 1 - z + e^{-2z}\cos(x-y) = 0$ in einer Umgebung des Punktes $P(\pi,0,0)$ als Graph einer stetig, differenzierbaren Funktion z=g(x,y) darstellen lässt. Berechnen Sie $\nabla g(\pi,0)$ sowie die Tangentialebene im Punkt P.